-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathquat.go
313 lines (266 loc) · 8.7 KB
/
quat.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
package vmath
import (
"fmt"
"math"
"github.com/maja42/vmath/math32"
)
// Quat represents a Quaternion.
type Quat struct {
W float32
X, Y, Z float32
}
func (q Quat) String() string {
return fmt.Sprintf("Quat[%f, %f x %f x %f]", q.W, q.X, q.Y, q.Z)
}
// IdentQuat returns the identity quaternion.
func IdentQuat() Quat {
return Quat{1, 0, 0, 0}
}
// QuatFromAxisAngle returns a quaternion representing a rotation around a given axis.
func QuatFromAxisAngle(axis Vec3f, rad float32) Quat {
axis = axis.Normalize()
sinAngle, cosAngle := math32.Sincos(rad * 0.5)
return Quat{
cosAngle,
axis[0] * sinAngle,
axis[1] * sinAngle,
axis[2] * sinAngle,
}
}
// QuatFromEuler returns a quaternion based on the given euler rotations.
// Axis: yaw: Z, pitch: Y, roll: X
func QuatFromEuler(yaw, pitch, roll float32) Quat {
// Source: https://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles
sinY, cosY := math32.Sincos(yaw * 0.5)
sinP, cosP := math32.Sincos(pitch * 0.5)
sinR, cosR := math32.Sincos(roll * 0.5)
return Quat{
W: cosR*cosP*cosY + sinR*sinP*sinY,
X: sinR*cosP*cosY - cosR*sinP*sinY,
Y: cosR*sinP*cosY + sinR*cosP*sinY,
Z: cosR*cosP*sinY - sinR*sinP*cosY,
}
}
// Equals compares two quaternions.
// Uses the default Epsilon as relative tolerance.
func (q Quat) Equals(other Quat) bool {
return q.EqualsEps(other, Epsilon)
}
// EqualsEps compares two quaternions, using the given epsilon as a relative tolerance.
func (q Quat) EqualsEps(other Quat, epsilon float32) bool {
return EqualEps(q.W, other.W, epsilon) &&
EqualEps(q.X, other.X, epsilon) && EqualEps(q.Y, other.Y, epsilon) && EqualEps(q.Z, other.Z, epsilon)
}
// Vec4f returns the quaternion as a vector representation.
func (q Quat) Vec4f() Vec4f {
return Vec4f{q.W, q.X, q.Y, q.Z}
}
// Add performs component-wise addition.
func (q Quat) Add(other Quat) Quat {
return Quat{q.W + other.W, q.X + other.X, q.Y + other.Y, q.Z + other.Z}
}
// AddScalar performs component-wise scalar addition.
func (q Quat) AddScalar(s float32) Quat {
return Quat{q.W + s, q.X + s, q.Y + s, q.Z + s}
}
// Sub performs component-wise subtraction.
func (q Quat) Sub(other Quat) Quat {
return Quat{q.W - other.W, q.X - other.X, q.Y - other.Y, q.Z - other.Z}
}
// SubScalar performs component-wise scalar subtraction.
func (q Quat) SubScalar(s float32) Quat {
return Quat{q.W - s, q.X - s, q.Y - s, q.Z - s}
}
// Mul performs component-wise multiplication.
func (q Quat) Mul(other Quat) Quat {
return Quat{q.W * other.W, q.X * other.X, q.Y * other.Y, q.Z * other.Z}
}
// MulScalar performs component-wise scalar multiplication.
func (q Quat) MulScalar(s float32) Quat {
return Quat{q.W * s, q.X * s, q.Y * s, q.Z * s}
}
// Div performs component-wise division.
func (q Quat) Div(other Quat) Quat {
return Quat{q.W / other.W, q.X / other.X, q.Y / other.Y, q.Z / other.Z}
}
// DivScalar performs component-wise scalar division.
func (q Quat) DivScalar(s float32) Quat {
return Quat{q.W / s, q.X / s, q.Y / s, q.Z / s}
}
// Rotate multiplies two quaternions, performing a rotation.
func (q Quat) Rotate(other Quat) Quat {
return Quat{
(other.W * q.W) - (other.X * q.X) - (other.Y * q.Y) - (other.Z * q.Z),
(other.X * q.W) + (other.W * q.X) - (other.Z * q.Y) + (other.Y * q.Z),
(other.Y * q.W) + (other.Z * q.X) + (other.W * q.Y) - (other.X * q.Z),
(other.Z * q.W) - (other.Y * q.X) + (other.X * q.Y) + (other.W * q.Z),
}
}
// RotateX rotates the quaternion with a given angle round its X axis.
func (q Quat) RotateX(rad float32) Quat {
// Source: http://glmatrix.net/docs/module-quat.html
sinR, cosR := math32.Sincos(rad * 0.5)
return Quat{
q.W*cosR - q.X*sinR,
q.X*cosR + q.W*sinR,
q.Y*cosR + q.Z*sinR,
q.Z*cosR - q.Y*sinR,
}
}
// RotateY rotates the quaternion with a given angle round its Y axis.
func (q Quat) RotateY(rad float32) Quat {
// Source: http://glmatrix.net/docs/module-quat.html
sinR, cosR := math32.Sincos(rad * 0.5)
return Quat{
q.W*cosR - q.Y*sinR,
q.X*cosR - q.Z*sinR,
q.Y*cosR + q.W*sinR,
q.Z*cosR + q.X*sinR,
}
}
// RotateZ rotates the quaternion with a given angle round its Y axis.
func (q Quat) RotateZ(rad float32) Quat {
// Source: http://glmatrix.net/docs/module-quat.html
sinR, cosR := math32.Sincos(rad * 0.5)
return Quat{
q.W*cosR - q.Z*sinR,
q.X*cosR + q.Y*sinR,
q.Y*cosR - q.X*sinR,
q.Z*cosR + q.W*sinR,
}
}
// Dot performs a dot product with another quaternion.
func (q Quat) Dot(other Quat) float32 {
return q.W*other.W + q.X*other.X + q.Y*other.Y + q.Z*other.Z
}
// Inverse returns the inverse quaternion.
// This is the rotation around the same axis, but in the opposite direction.
func (q Quat) Inverse() Quat {
return Quat{-q.W, q.X, q.Y, q.Z}
}
// Conjugate returns the conjugated quaternion.
// This is a rotation with the same angle, but the axis is mirrored.
func (q Quat) Conjugate() Quat {
return Quat{q.W, -q.X, -q.Y, -q.Z}
}
// Length returns the quaternion's length.
func (q Quat) Length() float32 {
return math32.Sqrt(q.W*q.W + q.X*q.X + q.Y*q.Y + q.Z*q.Z)
}
// SquareLength returns the quaternion's squared length.
func (q Quat) SquareLength() float32 {
return q.W*q.W + q.X*q.X + q.Y*q.Y + q.Z*q.Z
}
// Normalize the quaternion.
// The quaternion must be non-zero.
func (q Quat) Normalize() Quat {
length := q.Length()
if length == 1 { // shortcut
return q
}
return Quat{q.W / length, q.X / length, q.Y / length, q.Z / length}
}
// Right returns the up-vector in the quaternion's coordinate system.
func (q Quat) Up() Vec3f {
return q.RotateVec(Vec3f{0, 1, 0})
}
// Forward returns the forward-vector in the quaternion's coordinate system.
func (q Quat) Forward() Vec3f {
return q.RotateVec(Vec3f{0, 0, -1})
}
// Right returns the right-vector in the quaternion's coordinate system.
func (q Quat) Right() Vec3f {
return q.RotateVec(Vec3f{1, 0, 0})
}
// Axis returns the quaternion's rotation axis.
// The returned axis is not normalized.
// If there is no rotation, the axis can be zero.
func (q Quat) Axis() Vec3f {
return Vec3f{q.X, q.Y, q.Z}
}
// Angle returns the quaternion's rotation angle around its axis.
func (q Quat) Angle() float32 {
q = q.Normalize()
return math32.Acos(q.W) * 2
}
// AxisRotation returns the quaternion's rotation angle and axis.
func (q Quat) AxisRotation() (Vec3f, float32) {
// Based on: http://glmatrix.net/docs/module-quat.html
rad := q.Angle()
s := math32.Sin(rad * 0.5)
if s < Epsilon { // no rotation
return Vec3f{1, 0, 0}, rad
}
return Vec3f{q.X / s, q.Y / s, q.Z / s}, rad
}
// ToEuler converts the quaternion into euler rotations.
// Axis: yaw: Z, pitch: Y, roll: X
func (q Quat) ToEuler() (yaw, pitch, roll float32) {
// Source: https://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles
// roll (x-axis rotation)
srcp := 2 * (q.W*q.X + q.Y*q.Z)
crcp := 1 - 2*(q.X*q.X+q.Y*q.Y)
roll = math32.Atan2(srcp, crcp)
// pitch (y-axis rotation)
sp := 2 * (q.W*q.Y - q.Z*q.X)
if math32.Abs(sp) >= 1 {
pitch = math32.Copysign(math.Pi/2, sp) // use 90° if out of range
} else {
pitch = math32.Asin(sp)
}
// yaw (z-axis rotation)
sycp := 2 * (q.W*q.Z + q.X*q.Y)
cycp := 1 - 2*(q.Y*q.Y+q.Z*q.Z)
yaw = math32.Atan2(sycp, cycp)
return
}
// AngleTo returns the angle between two quaternions by comparing one of their axis.
func (q Quat) AngleTo(other Quat) float32 {
return q.Forward().Angle(other.Forward())
}
// Mat4f returns a homogeneous 3D rotation matrix based on the quaternion.
func (q Quat) Mat4f() Mat4f {
return Mat4f{
1 - 2*q.Y*q.Y - 2*q.Z*q.Z, 2*q.X*q.Y + 2*q.W*q.Z, 2*q.X*q.Z - 2*q.W*q.Y, 0,
2*q.X*q.Y - 2*q.W*q.Z, 1 - 2*q.X*q.X - 2*q.Z*q.Z, 2*q.Y*q.Z + 2*q.W*q.X, 0,
2*q.X*q.Z + 2*q.W*q.Y, 2*q.Y*q.Z - 2*q.W*q.X, 1 - 2*q.X*q.X - 2*q.Y*q.Y, 0,
0, 0, 0, 1,
}
}
// RotateVec rotates a vector.
func (q Quat) RotateVec(v Vec3f) Vec3f {
// Source: https://gamedev.stackexchange.com/a/50545/39091
s := q.W
u := Vec3f{q.X, q.Y, q.Z}
a := u.MulScalar(2 * u.Dot(v))
b := v.MulScalar(s*s - u.Dot(u))
c := u.Cross(v).MulScalar(2 * s)
return a.Add(b).Add(c)
}
// Lerp performs a linear interpolation to another quaternion.
// The parameter t should be in range [0, 1].
func (q Quat) Lerp(other Quat, t float32) Quat {
return other.Sub(q).MulScalar(t).Add(q)
}
// Slerp performs a spherical linear interpolation to another quaternion.
// The parameter t should be in range [0, 1].
func (q Quat) Slerp(other Quat, t float32) Quat {
// Source: http://glmatrix.net/docs/module-quat.html
dot := q.Dot(other)
if dot > 0.9999 { // quaternions are close together, perform lerp
return q.Lerp(other, t)
}
if dot < 0.0 { // adjust signs
dot = -dot
other.W = -other.W
other.X = -other.X
other.Y = -other.Y
other.Z = -other.Z
}
return Quat{
(1-t)*q.W + 1*other.W,
(1-t)*q.X + 1*other.X,
(1-t)*q.Y + 1*other.Y,
(1-t)*q.Z + 1*other.Z,
}
}