-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
392 lines (307 loc) · 10.8 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
import numpy as np
import torch
from sklearn.multioutput import MultiOutputClassifier
from torch_sparse import SparseTensor
from sklearn.metrics import (
roc_auc_score,
make_scorer,
balanced_accuracy_score,
)
from sklearn.neural_network import MLPClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn import model_selection, pipeline, metrics
# Metrics
from fairlearn.metrics import (
demographic_parity_difference,
equalized_odds_difference,
)
from itertools import combinations_with_replacement
def encode_classes(col):
"""
Input: categorical vector of any type
Output: categorical vector of int in range 0-num_classes
"""
classes = set(col)
classes_dict = {c: i for i, c in enumerate(classes)}
labels = np.array(list(map(classes_dict.get, col)), dtype=np.int32)
return labels
def onehot_classes(col):
"""
Input: categorical vector of int in range 0-num_classes
Output: one-hot representation of the input vector
"""
col2onehot = np.zeros((col.size, col.max() + 1), dtype=float)
col2onehot[np.arange(col.size), col] = 1
return col2onehot
def get_edge_embeddings(z, edge_index):
return z[edge_index[0]] * z[edge_index[1]]
def get_link_labels(pos_edge_index, neg_edge_index):
E = pos_edge_index.size(1) + neg_edge_index.size(1)
link_labels = torch.zeros(E, dtype=torch.float)
link_labels[: pos_edge_index.size(1)] = 1.0
return link_labels
def train_n2v(model, loader, optimizer, device):
model.train()
total_loss = 0
for pos_rw, neg_rw in loader:
optimizer.zero_grad()
loss = model.loss(pos_rw.to(device), neg_rw.to(device))
loss.backward()
optimizer.step()
total_loss += loss.item()
return total_loss / len(loader)
def train_rn2v(
model, loader, optimizer, device, pos_edge_index_tr, y_aux, round1, round2, N
):
keep = torch.where(round1, y_aux, round2)
row, col = pos_edge_index_tr[:, keep]
model.adj = SparseTensor(row=row, col=col, sparse_sizes=(N, N)).to("cpu")
model.train()
total_loss = 0
for pos_rw, neg_rw in loader:
optimizer.zero_grad()
loss = model.loss(pos_rw.to(device), neg_rw.to(device))
loss.backward()
optimizer.step()
total_loss += loss.item()
return total_loss / len(loader)
def train_rn2v_adaptive(
model, loader, optimizer, device, pos_edge_index_tr, y_aux, rand, N
):
keep = torch.where(rand, y_aux, ~y_aux)
row, col = pos_edge_index_tr[:, keep]
model.adj = SparseTensor(row=row, col=col, sparse_sizes=(N, N)).to("cpu")
model.train()
total_loss = 0
import pdb; pdb.set_trace()
for pos_rw, neg_rw in loader:
optimizer.zero_grad()
loss = model.loss(pos_rw.to(device), neg_rw.to(device))
loss.backward()
optimizer.step()
total_loss += loss.item()
return total_loss / len(loader)
def emb_fairness(XB, YB):
X_train, X_test, Y_train, Y_test = model_selection.train_test_split(
XB, YB, test_size=0.3, stratify=YB
)
log = model_selection.GridSearchCV(
pipeline.Pipeline(
[
(
"logi",
LogisticRegression(
multi_class="multinomial", solver="saga", max_iter=9000
),
)
]
),
param_grid={"logi__C": [1, 10, 100]},
cv=4,
scoring="balanced_accuracy",
)
mlp = model_selection.GridSearchCV(
pipeline.Pipeline(
[
(
"mlp",
MLPClassifier(
hidden_layer_sizes=(64, 32), solver="adam", max_iter=1000
),
)
]
),
param_grid={
"mlp__alpha": [0.001, 0.0001, 0.00001],
"mlp__learning_rate_init": [0.01, 0.001],
},
cv=4,
scoring="balanced_accuracy",
)
rf = model_selection.GridSearchCV(
pipeline.Pipeline([("rf", RandomForestClassifier())]),
param_grid={"rf__max_depth": [2, 4]},
cv=4,
scoring="balanced_accuracy",
)
c_dict = {
"LogisticRegression": log,
"MLPClassifier": mlp,
"RandomForestClassifier": rf,
}
r_dict = {"RB EMB": []}
for name, alg in c_dict.items():
print(f"Evaluating RB with: {name}")
alg.fit(X_train, Y_train)
clf = alg.best_estimator_
clf.fit(X_train, Y_train)
score = metrics.get_scorer("balanced_accuracy")(clf, X_test, Y_test)
r_dict["RB EMB"].append(score)
return r_dict
def emblink_fairness(XB, YB, pos_edge_index_tr, pos_edge_index_te):
X_train = np.hstack((XB[pos_edge_index_tr[0]], XB[pos_edge_index_tr[1]]))
X_test = np.hstack((XB[pos_edge_index_te[0]], XB[pos_edge_index_te[1]]))
YB = YB.reshape(-1, 1)
Y_train = np.hstack((YB[pos_edge_index_tr[0]], YB[pos_edge_index_tr[1]]))
Y_test = np.hstack((YB[pos_edge_index_te[0]], YB[pos_edge_index_te[1]]))
def double_accuracy(y, y_pred, **kwargs):
return (
balanced_accuracy_score(y[:, 0], y_pred[:, 0])
+ balanced_accuracy_score(y[:, 1], y_pred[:, 1])
) / 2
scorer = make_scorer(double_accuracy)
log = MultiOutputClassifier(
LogisticRegression(multi_class="multinomial", solver="saga", max_iter=1000)
)
mlp = MultiOutputClassifier(
MLPClassifier(hidden_layer_sizes=(64, 32), solver="adam", max_iter=1000)
)
rf = MultiOutputClassifier(RandomForestClassifier(max_depth=4))
c_dict = {
"LogisticRegression": log,
"MLPClassifier": mlp,
"RandomForestClassifier": rf,
}
r_dict = {"RB LINK": []}
for name, alg in c_dict.items():
print(f"Evaluating LINK RB with: {name}")
alg.fit(X_train, Y_train)
score = scorer(alg, X_test, Y_test)
r_dict["RB LINK"].append(score)
return r_dict
def fair_metrics(gt, y, group):
metrics_dict = {
"DPd": demographic_parity_difference(gt, y, sensitive_features=group),
"EOd": equalized_odds_difference(gt, y, sensitive_features=group),
}
return metrics_dict
def prediction_fairness(test_edge_idx, test_edge_labels, te_y, group):
te_dyadic_src = group[test_edge_idx[0]]
te_dyadic_dst = group[test_edge_idx[1]]
# SUBGROUP DYADIC
u = list(combinations_with_replacement(np.unique(group), r=2))
te_sub_diatic = []
for i, j in zip(te_dyadic_src, te_dyadic_dst):
for k, v in enumerate(u):
if (i, j) == v or (j, i) == v:
te_sub_diatic.append(k)
break
te_sub_diatic = np.asarray(te_sub_diatic)
# MIXED DYADIC
te_mixed_dyadic = te_dyadic_src != te_dyadic_dst
# GROUP DYADIC
te_gd_dict = fair_metrics(
np.concatenate([test_edge_labels, test_edge_labels], axis=0),
np.concatenate([te_y, te_y], axis=0),
np.concatenate([te_dyadic_src, te_dyadic_dst], axis=0),
)
te_md_dict = fair_metrics(test_edge_labels, te_y, te_mixed_dyadic)
te_sd_dict = fair_metrics(test_edge_labels, te_y, te_sub_diatic)
fair_list = [
te_md_dict["DPd"],
te_md_dict["EOd"],
te_gd_dict["DPd"],
te_gd_dict["EOd"],
te_sd_dict["DPd"],
te_sd_dict["EOd"],
]
return fair_list
def link_fairness(
Z, pos_edge_index_tr, pos_edge_index_te, neg_edge_index_tr, neg_edge_index_te, group
):
train_edge_idx = np.concatenate([pos_edge_index_tr, neg_edge_index_tr], axis=-1)
train_edge_embs = get_edge_embeddings(Z, train_edge_idx)
train_edge_labels = get_link_labels(pos_edge_index_tr, neg_edge_index_tr)
test_edge_idx = np.concatenate([pos_edge_index_te, neg_edge_index_te], axis=-1)
test_edge_embs = get_edge_embeddings(Z, test_edge_idx)
test_edge_labels = get_link_labels(pos_edge_index_te, neg_edge_index_te)
log = model_selection.GridSearchCV(
pipeline.Pipeline(
[
(
"logi",
LogisticRegression(
multi_class="multinomial", solver="saga", max_iter=9000
),
)
]
),
param_grid={"logi__C": [1, 10, 100]},
cv=4,
scoring="balanced_accuracy",
)
mlp = model_selection.GridSearchCV(
pipeline.Pipeline(
[
(
"mlp",
MLPClassifier(
hidden_layer_sizes=(64, 32), solver="adam", max_iter=1000
),
)
]
),
param_grid={
"mlp__alpha": [0.0001, 0.00001],
"mlp__learning_rate_init": [0.01, 0.001],
},
cv=4,
scoring="balanced_accuracy",
)
rf = model_selection.GridSearchCV(
pipeline.Pipeline([("rf", RandomForestClassifier())]),
param_grid={"rf__max_depth": [2, 4]},
cv=4,
scoring="balanced_accuracy",
)
# GROUP DYADIC (one class is involved more in the generation of links)
te_dyadic_src = group[test_edge_idx[0]]
te_dyadic_dst = group[test_edge_idx[1]]
# SUBGROUP DYADIC
u = list(combinations_with_replacement(np.unique(group), r=2))
# print(u)
te_sub_diatic = []
for i, j in zip(te_dyadic_src, te_dyadic_dst):
for k, v in enumerate(u):
if (i, j) == v or (j, i) == v:
te_sub_diatic.append(k)
break
te_sub_diatic = np.asarray(te_sub_diatic)
# MIXED DYADIC ( imbalanced intra-extra link creation )
te_mixed_dyadic = te_dyadic_src != te_dyadic_dst
c_dict = {
"LogisticRegression": log,
"MLPClassifier": mlp,
"RandomForestClassifier": rf,
}
fair_dict = {
"LogisticRegression": [],
"MLPClassifier": [],
"RandomForestClassifier": [],
}
for name, alg in c_dict.items():
alg.fit(train_edge_embs, train_edge_labels)
clf = alg.best_estimator_
clf.fit(train_edge_embs, train_edge_labels)
te_y = clf.predict(test_edge_embs)
te_p = clf.predict_proba(test_edge_embs)[:, 1]
auc = roc_auc_score(test_edge_labels, te_p)
te_gd_dict = fair_metrics(
np.concatenate([test_edge_labels, test_edge_labels], axis=0),
np.concatenate([te_y, te_y], axis=0),
np.concatenate([te_dyadic_src, te_dyadic_dst], axis=0),
)
te_md_dict = fair_metrics(test_edge_labels, te_y, te_mixed_dyadic)
te_sd_dict = fair_metrics(test_edge_labels, te_y, te_sub_diatic)
fair_dict[name] = [
auc,
# linkf,
te_md_dict["DPd"],
te_md_dict["EOd"],
te_gd_dict["DPd"],
te_gd_dict["EOd"],
te_sd_dict["DPd"],
te_sd_dict["EOd"],
]
return fair_dict