-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdeep_q_network.py
277 lines (212 loc) · 9.02 KB
/
deep_q_network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import numpy as np
import torch as th
from wacky.agents import ReinforcementLearnerArchitecture
from wacky.memory import NumpyMemoryDict, PrioritizedExperienceReplay
from wacky.exploration import DiscountingEpsilonGreedy, InterpolationEpsilonGreedy
from wacky.networks import OffPolicyNetworkWrapper
from wacky import functional as funky
class DQN(ReinforcementLearnerArchitecture):
def __init__(
self,
action_space,
observations_space,
network=None,
polyak=1.0,
optimizer: str = 'Adam',
lr: float = 0.0001,
buffer_size=1_000_000,
greedy_explorer=None,
n_steps: int = 1,
gamma: float = 0.99,
batch_size=32,
epochs=1,
double=True,
duelling=True,
per=False,
*args, **kwargs
):
super(DQN, self).__init__(*args, **kwargs)
if duelling:
make_net_func = funky.make_duelling_q_net
else:
make_net_func = funky.make_q_net
self.network = OffPolicyNetworkWrapper(
make_net_func=make_net_func,
polyak=polyak,
in_features=observations_space,
out_features=action_space,
net=network
)
self.optimizer = TorchOptimizer(
optimizer=optimizer,
network_parameter=self.network,
lr=lr,
)
self.network.override_target()
if per:
self.experience_replay = PrioritizedExperienceReplay().set_maxlen(buffer_size)
else:
self.experience_replay = NumpyMemoryDict().set_maxlen(buffer_size)
self.per = per
if greedy_explorer is None:
self.greedy_explorer = DiscountingEpsilonGreedy(
action_space,
eps_init=1.0,
eps_discount=0.999995,
eps_min=0.1,
)
else:
self.greedy_explorer = greedy_explorer
if n_steps == 1:
self.calc_returns = TemporalDifferenceReturns(gamma=gamma)
else:
self.calc_returns = NStepReturns(gamma=gamma, n=n_steps)
self.loss_fn = th.nn.SmoothL1Loss(reduction='none')
self.batch_size = batch_size
self.epochs = epochs
self.double = double
def call(self, state, deterministic=False, remember=True):
action = self.greedy_explorer(self.network.behavior, state, deterministic)
if remember:
self.experience_replay['states'].append(np.squeeze(state))
self.experience_replay['actions'].append(action)
return action
def current_value_from_behavior_network(self, batch):
actions = batch['actions'].type(th.int64).reshape(-1, 1)
return self.network.behavior(batch['states']).gather(1, actions)
def next_value_from_target_network(self, batch):
next_states = batch['next_states']
if self.double:
selected_action = self.network.behavior(next_states).argmax(dim=1, keepdim=True)
return self.network.target(next_states).gather(1, selected_action)
else:
return self.network.target(next_states).max(dim=1, keepdim=True)[0].detach()
def learn(self):
for epoch in range(self.epochs):
if self.per:
pass
for batch in self.experience_replay.generate_batches(self.batch_size, num_batches=1):
if batch is None:
break # batch is None if replay buffer memory doesn't have enough samples
if self.per:
batch, weights, batch_indices = batch
batch['values'] = self.current_value_from_behavior_network(batch)
batch['next_values'] = self.next_value_from_target_network(batch)
batch['returns'] = self.calc_returns(batch)
elem_wise_loss = self.loss_fn(batch['returns'], batch['values'])
# PER: importance sampling before average
if self.per:
loss = (elem_wise_loss * weights).mean()
else:
loss = elem_wise_loss.mean()
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
if self.per:
new_priorities = elem_wise_loss.detach().numpy() + self.experience_replay.eps
self.experience_replay.update_priorities(batch_indices, new_priorities)
def step(self, env, state, deterministic=False):
self.greedy_explorer.step()
state = th.FloatTensor(state).unsqueeze(0)
action = self.call(state, deterministic=deterministic)
if isinstance(action, th.Tensor):
action = action.detach()[0].numpy()
state, reward, done, _ = env.step(action)
reward -= int(done)
return state, reward, done
def warm_up(self, env, num_steps=50_000):
done = True
episode_rewards = funky.ValueTracer()
for t in range(num_steps):
if done:
state = env.reset()
episode_rewards.sum()
state, reward, done = self.step(env, state, deterministic=False)
self.experience_replay['next_states'].append(state)
self.experience_replay['rewards'].append(reward)
self.experience_replay['dones'].append(done)
if self.per:
self.experience_replay.tree_pointer_step()
episode_rewards(reward)
if self.per:
fraction = min(t / num_steps, 1.0)
self.experience_replay.beta = self.experience_replay.beta + fraction * (1.0 - self.experience_replay.beta)
print('warm-up:', t+1,
'rewards:', episode_rewards.reduce_mean(decimals=3),
'actions:', self.experience_replay.read('actions', reduce='mean', decimals=3),
'epsilon:', np.round(self.greedy_explorer.eps, 3),
)
def train(self, env, num_steps=None, train_interval=1_000, update_interval=1_000, log_interval=1_000, render=False):
if num_steps is None:
num_steps = self.num_steps
done = True
#train_interval_counter = funky.ThresholdCounter(train_interval)
#update_interval_counter = funky.ThresholdCounter(update_interval)
episode_rewards = funky.ValueTracer()
for t in range(num_steps):
if done:
state = env.reset()
episode_rewards.sum()
state, reward, done = self.step(env, state, deterministic=False)
self.experience_replay['next_states'].append(np.squeeze(state))
self.experience_replay['rewards'].append(reward)
self.experience_replay['dones'].append(done)
if self.per:
self.experience_replay.tree_pointer_step()
episode_rewards(reward)
if render:
env.render()
if t % train_interval == 0:
self.learn()
if t % update_interval == 0:
self.network.update_target_weights()
if t % log_interval == 0:
print('steps:', t + 1,
'rewards:', episode_rewards.reduce_mean(decimals=3),
'actions:', self.experience_replay.read('actions', reduce='mean', decimals=3),
'epsilon:', np.round(self.greedy_explorer.eps, 3),
#'tree_pointer:', self.experience_replay.tree_pointer,
'pointer:', self.experience_replay.pointer,
'max_index:', self.experience_replay.max_index,
)
if self.per:
fraction = min(t / num_steps, 1.0)
self.experience_replay.beta = self.experience_replay.beta + fraction * (1.0 - self.experience_replay.beta)
def compare_sb3(env):
from stable_baselines3 import DQN
model = DQN("MlpPolicy", env, verbose=1)
model.learn(total_timesteps=100_000, log_interval=4)
def main():
import gym
import time
env = gym.make('CartPole-v0')
#tic_sb3 = time.perf_counter()
#compare_sb3(env)
#toc_sb3 = time.perf_counter()
warm_up_steps = 10_000
num_steps = 200_000
greedy_explorer = InterpolationEpsilonGreedy(
env.action_space,
eps_interpolation='linear',
eps_init=1.0,
eps_min=0.1,
ramp_point_a=(warm_up_steps / (num_steps + warm_up_steps)),
ramp_point_b=0.5,
num_steps=(num_steps + warm_up_steps)
)
agent = DQN(
action_space=env.action_space,
observations_space=env.observation_space,
greedy_explorer=greedy_explorer,
buffer_size=100_000,
per=True
)
tic_wacky = time.perf_counter()
#agent.warm_up(env, warm_up_steps)
agent.train(env, num_steps, train_interval=4, update_interval=1000)
toc_wacky = time.perf_counter()
#print(f"sb3_time: {toc_sb3 - tic_sb3:0.4f}")
print(f"wacky_time: {toc_wacky - tic_wacky:0.4f}")
agent.test(env, 100)
if __name__ == '__main__':
main()