-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathmain_search_patch.py
80 lines (73 loc) · 3.21 KB
/
main_search_patch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import argparse
import time
import os
import h5py
import pickle
import pandas as pd
from database import HistoDatabase
from tqdm import tqdm
if __name__ == "__main__":
parser = argparse.ArgumentParser("Search for patch query in the database")
parser.add_argument("--patch_label_file", type=str, required=True)
parser.add_argument("--patch_data_path", type=str, required=True)
parser.add_argument("--exp_name", type=str, choices=['kather100k'])
parser.add_argument("--db_index_path", type=str, required=True)
parser.add_argument("--index_meta_path", type=str, required=True)
parser.add_argument("--codebook_semantic", type=str, default="./checkpoints/codebook_semantic.pt")
args = parser.parse_args()
# Create saving path
save_path = os.path.join("QUERY_RESULTS", "PATCH", "{}".format(args.exp_name))
speed_record_path = os.path.join("QUERY_SPEED", "PATCH", args.exp_name)
topk_MV = 5
if not os.path.exists(save_path):
os.makedirs(save_path)
if not os.path.exists(speed_record_path):
os.makedirs(speed_record_path)
# Load label file and database
patch_label_file = pd.read_csv(args.patch_label_file)
db = HistoDatabase(database_index_path=args.db_index_path,
index_meta_path=args.index_meta_path,
codebook_semantic=args.codebook_semantic,
is_patch=True)
t_acc = 0
query_count = 0
results = {}
for idx in tqdm(range(len(patch_label_file))):
t_start = time.time()
patch_name = patch_label_file.loc[idx, 'Patch Names']
patch_id = patch_name.split(".")[0]
label = patch_label_file.loc[idx, 'label']
print(patch_id)
db.leave_one_patient(patch_id)
latentfeat_path = os.path.join("./DATA_PATCH/", "{}_latent"
.format(args.exp_name), 'vqvae', patch_id + ".h5")
densefeat_path = os.path.join("./DATA_PATCH/", "{}_latent"
.format(args.exp_name), 'densenet', patch_id + ".pkl")
with h5py.File(latentfeat_path, 'r') as hf:
feat = hf['features'][:]
with open(densefeat_path, 'rb') as handle:
densefeat = pickle.load(handle)
tmp_res = []
t_start = time.time()
res = db.query(feat[0], densefeat)
tmp_res.append(res)
t_elapse = time.time() - t_start
t_acc += t_elapse
print("Search takes ", time.time() - t_start)
with open(os.path.join(speed_record_path, "speed_log.txt"), 'a') as handle:
handle.write("{},{}\n".format(patch_id, t_elapse))
key = patch_id
tmp_res = tmp_res[0]
tmp_clean = []
for r in tmp_res:
if r['patch_name'] == patch_id:
continue
else:
tmp_clean.append((r['hamming_dist'], r['diagnosis'], r['patch_name']))
top5 = sorted(tmp_clean, key=lambda x: x[0])[0:topk_MV]
results[key] = {'results': None, 'label_query': None}
results[key]['results'] = top5
results[key]['label_query'] = label
print("Total search takes: ", t_acc)
with open(os.path.join(save_path, "results.pkl"), 'wb') as handle:
pickle.dump(results, handle)