-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy patheval_patch.py
73 lines (69 loc) · 2.73 KB
/
eval_patch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import pickle
import time
import argparse
import math
from collections import Counter, defaultdict
if __name__ == "__main__":
parser = argparse.ArgumentParser("Evaluate the result of patch level search")
parser.add_argument("--result_path", required=True)
args = parser.parse_args()
# Load the result file and corresponding slide's diagnosis label
with open(args.result_path, 'rb') as handle:
results = pickle.load(handle)
total_slide = defaultdict(int)
for v in results.values():
total_slide[v['label_query']] += 1
metric_dict = {k: {'Acc': 0, 'Percision': 0, 'total_slide': 0}
for k in total_slide.keys()}
topk_MV = 5
ret_dict = defaultdict(list)
t_start = time.time()
for evlb in total_slide.keys():
# Evaluating the result diagnosis by diagnoiss
corr = 0
percision = 0
avg_percision = 0
count = 0
for patch in results.keys():
test_patch_result = results[patch]['results']
label_query = results[patch]['label_query']
if label_query != evlb:
continue
else:
# Process to calculate the final ret slide
ret_final = [r[1] for r in test_patch_result[0:topk_MV]]
ap_at_k = 0
corr_index = []
for lb in range(len(ret_final)):
if ret_final[lb] == evlb:
corr_index.append(lb)
if len(corr_index) == 0:
avg_percision += ap_at_k
else:
for i_corr in corr_index:
ap_at_idx_tmp = 0
for j in range(i_corr + 1):
if ret_final[j] == evlb:
ap_at_idx_tmp += 1
ap_at_idx_tmp /= (i_corr + 1)
ap_at_k += ap_at_idx_tmp
ap_at_k /= 5
avg_percision += ap_at_k
if len(ret_final) != 0:
hit_label = Counter(ret_final).most_common(1)[0][0]
else:
hit_label = 'NA'
if hit_label == label_query:
if len(ret_final) == topk_MV:
corr += 1
elif len(ret_final) < topk_MV and\
Counter(ret_final).most_common(1)[0][1] >= math.ceil(topk_MV):
corr += 1
else:
pass
count += 1
metric_dict[evlb]['Acc'] = corr / count
metric_dict[evlb]['Percision'] = avg_percision / count
metric_dict[evlb]['total_slide'] = count
print(time.time() - t_start)
print(metric_dict)