-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfeature_extraction.py
431 lines (395 loc) · 14.9 KB
/
feature_extraction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
from data import open_dataset, get_title
from preprocessor import stopword_remover, word_stemmer, word_lemmatizer, pos_tagger, pre_processed_all
from collections import defaultdict
from copy import deepcopy
from text_rank import filter_sentences, build_vocabulary, build_coo_matrix, pagerank
import re
import json
import numpy as np
flatten = lambda l: [item for sublist in l for item in sublist]
def idf_counter(data, attr_to_compute="paragraphs"):
document_frequency = defaultdict(int)
idf = defaultdict(float)
n_doc = len(data)
for i in data:
paragraphs = flatten(i[attr_to_compute])
words = set(flatten(paragraphs))
for word in words:
document_frequency[word] += 1
for k,v in document_frequency.items():
idf[k] = np.log2(1.0*n_doc/v)
return idf
def isf_counter(data, attr_to_compute="paragraphs"):
all_isf = []
for idx,i in enumerate(data):
# all_isf.append([])
sentences = flatten(i[attr_to_compute])
n_sentence = len(sentences)
sentence_frequency = defaultdict(int)
isf = defaultdict(float)
for sentence in sentences:
# print(sentence)
for word in set(sentence):
sentence_frequency[word] += 1
# print(sentence_frequency)
for k,v in sentence_frequency.items():
isf[k] = np.log2(1.0*n_sentence/v)
all_isf.append(isf)
# print(all_isf)
# break
return all_isf
def weighted_doc_tf(data, attr_to_compute="paragraphs"):
tf = []
for i in data:
paragraphs = flatten(i[attr_to_compute])
words = flatten(paragraphs)
doc_tf = defaultdict(float)
term_count = len(words)
for word in words:
doc_tf[word] += 1
for k,v in doc_tf.items():
doc_tf[k] = 1.0*v/term_count
tf.append(doc_tf)
return tf
def f1(s,S, attr_to_compute="paragraphs"):
flattened=[val for sublist in S[attr_to_compute] for val in sublist]
temp=deepcopy(flattened)
temp.remove(s)
flattened2=[val for sublist in temp for val in sublist]
d1=list(set(s).intersection(flattened2))
return len(d1)
def f3(s,S):
tot=0
for word in s:
if word.isupper() or any(list(x.isupper() for x in word)):
tot+=1
return tot/len(s) if len(s)>0 else 0
def f6(s,S):
res = 0
title = get_title(S["source"], S["source_url"])
for x in (s):
if x.lower() in (title):
res = res+1
res = 1.0*res/len(title)
return res
def f7(s,S):
res = 0
if s==S["paragraphs"][0][0] or s==S["paragraphs"][0][len(S["paragraphs"][0])-1] or s==S["paragraphs"][len(S["paragraphs"])-1][0] or s==S["paragraphs"][len(S["paragraphs"])-1][len(S["paragraphs"][len(S["paragraphs"])-1])-1]:
res = 1
return res
def f1_extraction(data, attr_to_compute="paragraphs"):
# similarity sentence
for doc in data:
doc["F1"]=[]
for paragraph in doc[attr_to_compute]:
for sentence in paragraph:
res=f1(sentence,doc, attr_to_compute)
doc["F1"].append(res)
max_f1 = max(doc["F1"])
doc["F1"] = [f1_val/max_f1 if max_f1>0 else 0 for f1_val in doc["F1"]]
return data
def f2_extraction(data, attr_to_compute="paragraphs"):
flatten=lambda l: [item for sublist in l for item in sublist]
cout=0 #del
for doc in data:
doc["F2"]=[]
flag=1
for idx,paragraph in enumerate(doc[attr_to_compute]):
list_f2=[]
for sentence in paragraph:
temp=deepcopy(doc)
temp[attr_to_compute].pop(idx)
flattened=[val for sublist in temp[attr_to_compute] for val in sublist]
flattened2=[val for sublist in flattened for val in sublist]
res=len(list(set(sentence).intersection(flattened2)))
temp=deepcopy(doc)
flattened=[val for sublist in temp[attr_to_compute] for val in sublist]
if flag==1:
f=[]
for j in range(len(doc[attr_to_compute])):
for i in range(len(doc[attr_to_compute][j])):
a=flattened[i]
temp=deepcopy(doc[attr_to_compute])
temp.pop(j)
flattened2=[val for sublist in [val for sublist in temp for val in sublist] for val in sublist]
d2=list(set(a).intersection(flattened2))
f.append(len(d2))
denom=max(f)
if denom==0:
result=0
else:
result=res/denom
else:
if denom==0:
result=0
else:
result=res/denom
list_f2.append(result)
flag=0
doc["F2"].append(list_f2)
doc["F2"]=flatten(doc["F2"])
return data
def f3_extraction(data, attr_to_compute="paragraphs"):
# Unique Formatting
for doc in data:
doc["F3"]=[]
for paragraph in doc[attr_to_compute]:
list_f3=[]
for sentence in paragraph:
list_f3.append(f3(sentence,doc))
doc["F3"].append(list_f3)
doc["F3"]=flatten(doc["F3"])
return data
def f4_extraction(data):
# Important cue phrases
# NOT EXTRACTED DUE TO LACK OF CUE PHRASES DATA
pass
def f5_extraction(data, attr_to_compute="paragraphs"):
# TF-IDF
tf = weighted_doc_tf(data, attr_to_compute)
idf = idf_counter(data, attr_to_compute)
for idx, doc in enumerate(data):
doc["F5"] = []
for i,paragraph in enumerate(doc[attr_to_compute]):
doc["F5"].append([])
doc["F5"][i] = []
for j,sentence in enumerate(paragraph):
doc["F5"][i].append(0.0)
for word in sentence:
doc["F5"][i][j] += tf[i][word]*idf[word]
doc_max_tf_idf = max(flatten(doc["F5"]))
for i,paragraph in enumerate(doc[attr_to_compute]):
for j,sentence in enumerate(paragraph):
if doc_max_tf_idf > 0:
doc["F5"][i][j] /= doc_max_tf_idf
else:
doc["F5"][i][j] = 0
doc["F5"] = flatten(doc["F5"])
return data
def f6_extraction(data, attr_to_compute="paragraphs"):
# unigram overlap sentencce with title
for doc in data:
doc["F6"]=[]
for paragraph in doc[attr_to_compute]:
list_f6=[]
for sentence in paragraph:
list_f6.append(f6(sentence,doc))
doc["F6"].append(list_f6)
doc["F6"]=flatten(doc["F6"])
return data
def f7_extraction(data, attr_to_compute="paragraphs"):
# Paragraph location
for doc in data:
doc["F7"]=[]
for paragraph in doc[attr_to_compute]:
list_f7=[]
n_sentence = len(paragraph)
for idx, sentence in enumerate(paragraph):
list_f7.append(1 if(idx==0 or idx==n_sentence-1) else 0)
doc["F7"].append(list_f7)
doc["F7"]=flatten(doc["F7"])
return data
def f8_extraction(data):
# Trivial cue phrases
# NOT EXTRACTED DUE TO LACK OF PHRASES INFORMATION
pass
def f9_extraction(data, attr_to_compute="paragraphs"):
#Sscorecore for sentences contains Proper Noun
# Must run pos_tagger() first
for category in data:
category['F9'] = []
for paragraph in category['word_tag_{}'.format(attr_to_compute)]:
list_score_kalimat = []
for kalimat in paragraph:
tag_NNP = 0
for tag in kalimat:
if tag[1]=='NNP':
tag_NNP += 1
else:
continue
score = float(tag_NNP/len(kalimat))
list_score_kalimat.append(score)
category['F9'].append(list_score_kalimat)
category["F9"] = flatten(category["F9"])
return data
def f10_extraction(data, attr_to_compute="paragraphs"):
# TF-ISF
tf = weighted_doc_tf(data, attr_to_compute)
isf = isf_counter(data, attr_to_compute)
for idx, doc in enumerate(data):
doc["F10"] = []
for i,paragraph in enumerate(doc[attr_to_compute]):
doc["F10"].append([])
doc["F10"][i] = []
for j,sentence in enumerate(paragraph):
doc["F10"][i].append(0.0)
for word in sentence:
doc["F10"][i][j] += tf[i][word]*isf[idx][word]
# Normalization
doc_max_tf_isf = max(flatten(doc["F10"]))
for i,paragraph in enumerate(doc[attr_to_compute]):
for j,sentence in enumerate(paragraph):
if doc_max_tf_isf > 0:
doc["F10"][i][j] /= doc_max_tf_isf
else:
doc["F10"][i][j] = 0
doc["F10"] = flatten(doc["F10"])
return data
# Text Rank get score
def f11_extraction(data, attr_to_compute="paragraphs"):
for category in data:
category['F11'] = []
temp = []
for paragraph in category[attr_to_compute]:
list_score_textrank = []
for kalimat in paragraph:
filtered_sentences = filter_sentences([kalimat])
word_to_ix, ix_to_word = build_vocabulary(filtered_sentences)
S = build_coo_matrix(filtered_sentences, word_to_ix)
ranks = pagerank(S)
score = ranks.sum()
list_score_textrank.append(score)
temp.append(list_score_textrank)
flatted_score = flatten(temp)
max_score = max(flatted_score)
for paragraph_score in temp:
list_score_textrank = []
for sentence_score in paragraph_score:
list_score_textrank.append(sentence_score/max_score)
category["F11"].append(list_score_textrank)
category["F11"] = flatten(category["F11"])
return data
def f12_extraction(data, attr_to_compute="paragraphs"):
# sentence centrality
# ratio unigram overlap sentence with overall unigram in doc
for category in data:
category['F12'] = []
for paragraph in category[attr_to_compute]:
list_score_overlap = []
for kalimat in paragraph:
kalimat_lain = list(category[attr_to_compute])
kalimat_lain = flatten(kalimat_lain)
kalimat_lain.remove(kalimat)
kalimat_lain = flatten(kalimat_lain)
overlap = len(set(kalimat)) + len(set(kalimat_lain)) - len(set(kalimat + kalimat_lain))
overlap_score = float(overlap/len(set(kalimat + kalimat_lain)))
list_score_overlap.append(overlap_score)
category['F12'].append(list_score_overlap)
category["F12"] = flatten(category["F12"])
return data
def f13_extraction(data, attr_to_compute="paragraphs"):
# Sentence Length
for doc in data:
doc["F13"] = []
for paragraph in doc[attr_to_compute]:
for sentence in paragraph:
doc["F13"].append(len(sentence))
max_n = max(doc["F13"])
doc["F13"] = [i/max_n for i in doc["F13"]]
return data
def f14_extraction(data, attr_to_compute="paragraphs"):
# Sentence Position in document
for doc in data:
doc["F14"] = []
n_sentence = len(flatten(doc[attr_to_compute]))
sentence_counter = 0
for paragraph in doc[attr_to_compute]:
for sentence in paragraph:
doc["F14"].append(1-(sentence_counter/n_sentence))
sentence_counter += 1
return data
def compute_feature(data):
data = f1_extraction(data)
data = f2_extraction(data)
data = f3_extraction(data)
data = f5_extraction(data)
data = f6_extraction(data)
data = f7_extraction(data)
data = f9_extraction(data)
data = f10_extraction(data)
data = f11_extraction(data)
data = f12_extraction(data)
data = f13_extraction(data)
data = f14_extraction(data)
return data
def save_feature(data, precomputed=False, file_dir="analysis/feature_set.jsonl"):
data = data if precomputed else compute_feature(data)
selected_field = ["id", "F1", "F2", "F3", "F5", "F6", "F7", "F9", "F10", "F11", "F12", "F13", "F14",'gold_labels']
with open(file_dir, "w") as f:
for datum in data:
selected_data = {}
for field in selected_field:
if field in datum:
selected_data[field] = datum[field]
else:
selected_data[field] = []
f.write(json.dumps(selected_data))
f.write("\n")
# Must run save_feature first
# Array look alike data
def save_array_data_for_model(file_dir="analysis/feature_set.jsonl", file_save="analysis/nested_data.txt"):
data = []
flatten = lambda l: [item for sublist in l for item in sublist]
for line in open(file_dir, 'r'):
data.append(json.loads(line))
# Make gold_labels binary
for doc in data:
list_label = []
for label in doc['gold_labels']:
label = [1 if boolean==True else 0 for boolean in label]
list_label.append(label)
doc['gold_labels'] = flatten(list_label)
#Flatten data
for doc in data:
for feat in doc:
if isinstance(doc[feat], list):
doc[feat] = flatten(doc[feat])
else:
continue
# Save data into nested array
data_transpose = []
for doc in data:
data_matrix = []
for feat in doc:
if isinstance(doc[feat], list):
data_matrix.append(doc[feat])
else:
continue
transpose_matrix = list(map(list, zip(*data_matrix)))
data_transpose.append(transpose_matrix)
nested_array = flatten(data_transpose)
# Save file
np.savetxt(file_save, nested_array, fmt='%s')
def demo():
data = [open_dataset("dev", 1),open_dataset("train", 1), open_dataset("test", 1)]
data = flatten(data)
data = pre_processed_all(data)
attr = ["stemmed_paragraphs", "lemma_paragraphs", "paragraphs"]
for i in attr:
print("F3")
data = f3_extraction(data, i)
print("F5")
data = f5_extraction(data, i)
print("F6")
data = f6_extraction(data, i)
print("F7")
data = f7_extraction(data, i)
print("F9")
data = f9_extraction(data, i)
print("F10")
data = f10_extraction(data, i)
print("F12")
data = f12_extraction(data, i)
print("F13")
data = f13_extraction(data, i)
print("F14")
data = f14_extraction(data, i)
print("F1")
data = f1_extraction(data, i)
print("F11")
data = f11_extraction(data, i)
print("F2")
data = f2_extraction(data, i)
save_feature(data, precomputed=True, file_dir="analysis/feature_set_new_{}.jsonl".format(i))
if __name__ == "__main__":
demo()