International Morse Code defines a standard encoding where each letter is mapped to a series of dots and dashes, as follows:
- 'a' maps to ".-",
- 'b' maps to "-...",
- 'c' maps to "-.-.", and so on.
For convenience, the full table for the 26 letters of the English alphabet is given below:
[".-","-...","-.-.","-..",".","..-.","--.","....","..",".---","-.-",".-..","--","-.","---",".--.","--.-",".-.","...",
"-","..-","...-",".--","-..-","-.--","--.."]
Given an array of strings words where each word can be written as a concatenation of the Morse code of each letter.
For example, "cab" can be written as "-.-..--...", which is the concatenation of "-.-.", ".-", and "-...". We will call such a concatenation the transformation of a word. Return the number of different transformations among all words we have.
Example 1:
Input: words = ["gin","zen","gig","msg"]
Output: 2
Explanation: The transformation of each word is:
"gin" -> "--...-."
"zen" -> "--...-."
"gig" -> "--...--."
"msg" -> "--...--."
There are 2 different transformations: "--...-." and "--...--.".
Example 2:
Input: words = ["a"]
Output: 1
Solution
class Solution:
def uniqueMorseRepresentations(self, words: List[str]) -> int:
codes = set()
lookup = {
'a': '.-',
'b': '-...',
'c': '-.-.',
'd': '-..',
'e': '.',
'f': '..-.',
'g': '--.',
'h': '....',
'i': '..',
'j': '.---',
'k': '-.-',
'l': '.-..',
'm': '--',
'n': '-.',
'o': '---',
'p': '.--.',
'q': '--.-',
'r': '.-.',
's': '...',
't': '-',
'u': '..-',
'v': '...-',
'w': '.--',
'x': '-..-',
'y': '-.--',
'z': '--..'
}
for word in words:
wordmorse = ''
for char in word:
wordmorse += lookup[char]
codes.add(wordmorse)
return len(codes)