-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathSnakefile
448 lines (387 loc) · 15.8 KB
/
Snakefile
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
from glob import glob
import os
from pathlib import PosixPath
import urllib
include: 'rules/common.smk'
include: 'rules/rhizo.smk'
rule all:
input:
#"outputs/cami_i_low/opal_output/results.html",
"outputs/cami_i_low/opal_output_all/results.html",
#"outputs/cami_ii_mg/opal_output/results.html",
"outputs/cami_ii_mg/opal_output_all/results.html",
#expand("outputs/lca/refseq-k{k}-s{scaled}.lca.json.gz", k=(21,31,51), scaled=(2000, 10000)),
### Include external rules for index construction
# Uncomment this for initial run and rebuilding indices,
# keeping it separated to avoid taking too long to recompute snakemake DAG
#include: "rules/build_indices.smk"
### Links for data
LCA_URLS = {
'genbank': {
'21': 'https://osf.io/d7rv8/download',
'31': 'https://osf.io/4f8n3/download',
'51': 'https://osf.io/nemkw/download'
}
}
SBT_URLS = {
'genbank': {
'21': 'https://osf.io/nqs7k/download',
'31': 'https://osf.io/h7k8a/download',
'51': 'https://osf.io/jznwe/download'
}
}
PROFILES = {
# Data from OPAL repo: convenient, but not official
"cami_i_low": {
"data/metalign_profiles/metalign_default_cami1_low1.tsv": "Metalign",
"data/opal/grave_wright_13": "Quikr",
"data/opal/focused_archimedes_13": "MetaPhyler",
"data/opal/furious_elion_13": "MP2.0",
"data/opal/cranky_wozniak_13": "TIPP",
"data/opal/agitated_blackwell_7": "CLARK",
"data/opal/jolly_pasteur_3": "FOCUS",
"data/opal/evil_darwin_13": "mOTU",
#"data/metalign_profiles/metalign_sensitive_cami1_low1.tsv": "Metalign sensitive",
#"data/metalign_profiles/metalign_precise_cami1_low1.tsv": "Metalign precise",
},
#'cami_i_low': {},
'cami_ii_mg': {},
}
# I ran metalign myself, NOT OFFICIAL
PROFILES['cami_ii_mg']['data/metalign_profiles/metalign_default_cami_ii_mg.profile'] = "metalign"
# cami_ii_mg available profiles
for tool in ("motus2.5.1", "metaphlan2.9.21", "metaphlan2.2.0", "metapalette1.0.0",
"motus1.1", "metaphyler1.25", "tipp2.0.0", "bracken2.5",
"camiarkquikr1.0.0", "focus0.31"):
path = f"data/cami_ii_mg_profiles/cami2_mouse_gut_{tool}.profile"
PROFILES['cami_ii_mg'][path] = tool
# cami_i_low available profiles from official results
CAMI_I_LOW_PROFILES = {
"CLARK_v1.1.3": "serene_almeida_reformatted",
# "Common_Kmers_": "RL_S001__insert_270.fq-QC-default.profile",
# "Common_Kmers_Sensitive_Unnormalized": "all.fq-QC-sensitive-unnormalized.profile",
"commonkmers_sjanssen": "result_3.profile",
"DUDes_": "RL_diginorm_0.1_k60-t1m0a0.000005-strain.out",
# "DUDes_old": "RL_diginorm_subset10M_k10_profile.out",
# "FOCUS_cfk7b": "cfk7b.out",
# "FOCUS_cfk7bd": "cfk7bd.out",
# "FOCUS_cfk7d": "cfk7d.out",
# "FOCUS_cfk8b": "cfk8b.out",
# "FOCUS_cfk8bd": "cfk8bd.out",
# "FOCUS_cfk8d": "cfk8d.out",
"FOCUS_sjanssen": "result_3.profile",
"MetaPhlAn2.0_db_v20": "result_3_pairedend.txt.profile",
"MetaPhyler_V1.25": "result_3.profile",
"mOTU_1.1.1": "result_3.profile",
"Quickr_sjanssen": "result_3.profile",
# "Taxy-Pro_": "cami_low 2.profile",
"Taxy-Pro_sjanssen": "result_3.profile",
"TIPP_1.1": "result_3.profile",
}
#for (tool, path) in CAMI_I_LOW_PROFILES.items():
# path = f"data/program_results/profiling/1st_CAMI_Challenge_Dataset_1_CAMI_low/Low/{tool}/{path}"
# PROFILES['cami_i_low'][path] = tool
### Download CAMI databases
rule download_camiClient:
output: "bin/camiClient.jar"
shell: "wget -qO {output} https://data.cami-challenge.org/camiClient.jar"
rule download_taxonomy:
output: "inputs/taxdump_cami2_toy.tar.gz"
shell: "wget -qO {output} https://openstack.cebitec.uni-bielefeld.de:8080/swift/v1/CAMI_DATABASES/taxdump_cami2_toy.tar.gz"
rule download_taxonomy_cami_i:
output: "inputs/taxonomy_cami_i.tar.gz"
shell: "wget -qO {output} ftp://parrot.genomics.cn/gigadb/pub/10.5524/100001_101000/100344/databases.dir/taxonomy.tar.gz"
rule extract_cami2_toy_taxonomy:
output: expand("inputs/taxdump/{file}.dmp", file=('names', 'nodes'))
input: "inputs/taxdump_cami2_toy.tar.gz"
params:
outdir = lambda w, input, output: os.path.dirname(output[0])
shell: """
mkdir -p {params.outdir}
cd {params.outdir} && tar xf ../../{input}
"""
rule download_refseq_genomic:
output: "inputs/refseq/RefSeq_genomic_20190108.tar"
shell: """
wget -qO {output[0]} https://openstack.cebitec.uni-bielefeld.de:8080/swift/v1/CAMI_2_DATABASES/RefSeq_genomic_20190108.tar
mkdir -p inputs/refseq/sequences
cd inputs/refseq/sequences && tar xf ../RefSeq_genomic_20190108.tar
"""
rule download_cami2_taxonomy:
output: "inputs/ncbi_taxonomy.tar"
shell: """
wget -qO {output[0]} https://openstack.cebitec.uni-bielefeld.de:8080/swift/v1/CAMI_2_DATABASES/ncbi_taxonomy.tar
"""
rule download_camiclient_taxonomy:
output: "inputs/taxdb.tar.gz"
shell: """
wget -qO {output[0]} https://openstack.cebitec.uni-bielefeld.de:8080/swift/v1/CAMI_DATABASES/taxdb.tar.gz
"""
rule extract_camiclient_taxonomy:
output: "inputs/taxdb/neostore"
input: "inputs/taxdb.tar.gz"
params:
infile = lambda w, input: os.path.basename(input[0])
shell: """
cd inputs && tar xf {params.infile}
"""
rule extract_cami2_taxonomy:
output: expand("inputs/ncbi_taxonomy/{file}.dmp", file=('names', 'nodes'))
input: "inputs/ncbi_taxonomy.tar"
params:
infile = lambda w, input: os.path.basename(input[0])
shell: """
cd inputs && tar xf {params.infile}
cd ncbi_taxonomy && tar xf taxdump.tar.gz
"""
rule download_and_extract_cami2_acc2taxid:
output:
compressed = "inputs/ncbi_taxonomy/accession2taxid/ncbi_taxonomy_accession2taxid.tar",
gb = "inputs/ncbi_taxonomy/accession2taxid/nucl_gb.accession2taxid.gz",
wgs = "inputs/ncbi_taxonomy/accession2taxid/nucl_wgs.accession2taxid.gz",
input:
"inputs/ncbi_taxonomy/names.dmp",
wgs = "db/nucl_wgs.accession2taxid.gz",
shell: """
wget -qO {output.compressed} https://openstack.cebitec.uni-bielefeld.de:8080/swift/v1/CAMI_2_DATABASES/ncbi_taxonomy_accession2taxid.tar
tar xf {output.compressed} -C inputs/ncbi_taxonomy/accession2taxid --strip-components 1
cp {input.wgs} {output.wgs}
"""
### Metalign profiles
# available precisions: default, sensitive, precise
rule download_metalign_profiles:
output: "data/metalign_profiles/metalign_{precision}_cami1_low1.tsv"
shell: "wget -qO {output[0]} https://github.com/nlapier2/Metalign/raw/378262587455fd5899a1de25995e28b09bc8d03b/paper_data/raw_results/cami1/metalign_results/metalign_{wildcards.precision}_cami1_low1.tsv"
### Current acc-to-taxid mappings (genbank and wgs)
rule download_gb_acc2taxid:
output: "db/nucl_gb.accession2taxid.gz"
shell: "wget -qO {output} https://ftp.ncbi.nlm.nih.gov/pub/taxonomy/accession2taxid/nucl_gb.accession2taxid.gz"
rule download_wgs_acc2taxid:
output: "db/nucl_wgs.accession2taxid.gz"
shell: "wget -qO {output} https://ftp.ncbi.nlm.nih.gov/pub/taxonomy/accession2taxid/nucl_wgs.accession2taxid.gz"
### Download CAMI gold standards, other tools profiles and biobox definitions
#### CAMI 2 data
rule download_gs_cami_ii_mg:
output: "data/gs_cami_ii_mg.profile"
shell: "wget -qO {output} https://github.com/CAMI-challenge/OPAL/raw/master/data/gs_cami_ii_mg.profile"
rule download_biobox_cami_ii_mg:
output: "data/biobox_cami_ii_mg.yaml"
shell: "wget -qO {output} https://github.com/CAMI-challenge/OPAL/raw/master/data/biobox_cami_ii_mg.yaml"
rule download_cami_ii_mg_summary:
output: "data/summary_cami_ii_mg.tsv"
shell: "wget -qO {output} https://github.com/CAMI-challenge/data/raw/256460db625384a561aaf67ca168efd9ae070a52/CAMI2/toy/mouse_gut/taxonomic_profiling.tsv"
rule download_cami_ii_mg_profiles:
output:
expand("data/cami_ii_mg_profiles/cami2_mouse_gut_{tool}.profile",
tool=("bracken2.5", "camiarkquikr1.0.0", "focus0.31", "metapalette1.0.0",
"metaphlan2.2.0", "metaphlan2.9.21", "metaphyler1.25", "motus1.1",
"motus2.5.1", "tipp2.0.0")
)
input: "data/summary_cami_ii_mg.tsv"
run:
import pandas as pd
dirpath = os.path.dirname(output[0])
t = pd.read_table(input[0])
for link in t['DirectLink']:
outfile = os.path.basename(urllib.parse.urlparse(link).path)
shell(f"wget -qO {dirpath}/{outfile} {link}")
rule download_cami_ii_mg:
output: expand("inputs/cami_ii_mg/19122017_mousegut_scaffolds/2017.12.29_11.37.26_sample_{n}/reads/anonymous_reads.fq.gz", n=range(0,64))
input: "bin/camiClient.jar"
shell: """
mkdir -p inputs/cami_ii_mg && \
java -jar {input} \
-d https://openstack.cebitec.uni-bielefeld.de:8080/swift/v1/CAMISIM_MOUSEGUT \
inputs/cami_ii_mg \
-p 'mousegut_scaffolds.*anonymous_reads.fq.gz' \
-t 64
"""
rule download_cami_ii_marine:
output:
expand("inputs/CAMI_2_MARINE/marmgCAMI2_{type}_read_sample_{n}_reads.fq.gz",
n=range(0,10),
type=("short", "long"))
input:
client = "bin/camiClient.jar",
linkfile = "data/marine.linkfile",
shell: """
mkdir -p inputs/CAMI_2_MARINE && \
java -jar {input} \
-d {input.linkfile} \
inputs/CAMI_2_MARINE \
-t 64
"""
rule download_cami_ii_strain:
output:
expand("inputs/CAMI_2_STRAIN/reads/strmgCAMI2_{type}_read_sample_{n}_reads.fq.gz",
n=range(0,100),
type=("short", "long"))
input:
client = "bin/camiClient.jar",
linkfile = "data/strain.linkfile",
shell: """
mkdir -p inputs/CAMI_2_STRAIN && \
java -jar {input} \
-d {input.linkfile} \
inputs/CAMI_2_STRAIN \
-t 64
"""
### CAMI I data
rule download_gs_cami_i_hc:
output: "data/gs_cami_i_hc.profile"
shell: "wget -qO {output} https://github.com/CAMI-challenge/OPAL/raw/master/data/gs_cami_i_hc.profile"
rule download_biobox_cami_i_hc:
output: "data/biobox_cami_i_hc.yaml"
shell: "wget -qO {output} https://github.com/CAMI-challenge/OPAL/raw/master/data/biobox_cami_i_hc.yaml"
rule download_cami_i_hc:
output: expand("inputs/cami_i_hc/RH_S00{n}__insert_270.fq.gz", n=range(1,6))
input: "bin/camiClient.jar"
params:
output_dir = lambda w, output: os.path.dirname(output[0])
shell: """
mkdir -p {params.output_dir} && \
java -jar bin/camiClient.jar -d https://openstack.cebitec.uni-bielefeld.de:8080/swift/v1/CAMI_I_HIGH {params.output_dir}
"""
rule download_cami_i_medium:
output:
expand("inputs/cami_i_medium/RM1_S00{n}__insert_5000.fq.gz", n=(1, 2)),
expand("inputs/cami_i_medium/RM2_S00{n}__insert_270.fq.gz", n=(1, 2)),
input: "bin/camiClient.jar"
params:
output_dir = lambda w, output: os.path.dirname(output[0])
shell: """
mkdir -p {params.output_dir} && \
java -jar bin/camiClient.jar -d https://openstack.cebitec.uni-bielefeld.de:8080/swift/v1/CAMI_I_MEDIUM {params.output_dir}
"""
rule download_gs_cami_i_low:
output: "data/gs_cami_i_low.profile"
shell: "wget -qO {output} https://github.com/CAMI-challenge/OPAL/raw/master/data/goldstandard_low_1.bin"
rule download_biobox_cami_i_low:
output: "data/biobox_cami_i_low.yaml"
# TODO: fix this
shell: "wget -qO {output} https://github.com/CAMI-challenge/OPAL/raw/master/data/biobox_cami_i_hc.yaml"
rule download_program_results_cami_i:
output: "data/program_results.tar.gz"
shell: "wget -qO {output} ftp://parrot.genomics.cn/gigadb/pub/10.5524/100001_101000/100344/program_results.tar.gz"
#rule extract_program_results_cami_i:
# output: PROFILES['cami_i_low'].keys()
# input: "data/program_results.tar.gz"
# shell: """
# mkdir -p data
# cd data && tar xf ../{input} program_results/profiling
# """
# TODO: fix sample names in cami_i_low profiles
rule download_cami_i_low:
output: "inputs/cami_i_low/RL_S001__insert_270.fq.gz"
input: "bin/camiClient.jar"
params:
output_dir = lambda w, output: os.path.dirname(output[0])
shell: """
mkdir -p {params.output_dir} && \
java -jar bin/camiClient.jar -d https://openstack.cebitec.uni-bielefeld.de:8080/swift/v1/CAMI_I_LOW {params.output_dir} -p fq.gz
"""
### Download prepared sourmash databases
rule download_lca_database:
output: "db/{db}-k{ksize}.lca.json.gz"
params:
url = lambda w: LCA_URLS[w.db][w.ksize]
shell: "wget -qO {output[0]} {params.url}"
rule download_sbt_database:
output:
db="db/{db}-d2-k{ksize}.sbt.zip",
compressed="db/{db}-k{ksize}.tar.gz"
params:
url = lambda w: SBT_URLS[w.db][w.ksize],
basename_compressed = lambda w, output: os.path.basename(output.compressed)
shell: """
wget -qO {output.compressed} {params.url} && \
cd db && tar xf {params.basename_compressed}
"""
### snakemake rules to mirror opal workflow
### This is needed because opal workflow runs everything serially,
### and that takes too long...
rule profile_for_challenge_sample:
output:
"outputs/{challenge}/profiles/{sample}",
input:
#data = input_for_sample,
biobox = "data/biobox_{challenge}.yaml",
#db = "db/genbank-k51.lca.json.gz",
#db = "outputs/sbt/refseq-k51.sbt.zip",
db = "outputs/lca/refseq-k51-s10000.lca.json.gz",
acc2taxid_gb = "inputs/ncbi_taxonomy/accession2taxid/nucl_gb.accession2taxid.gz",
acc2taxid_wgs = "inputs/ncbi_taxonomy/accession2taxid/nucl_wgs.accession2taxid.gz",
taxonomy = "inputs/ncbi_taxonomy/names.dmp"
params:
datadir = datadir_for_sample,
outputdir = lambda w: f"outputs/{w.challenge}",
dbdir = lambda w, input: os.path.dirname(input.db),
taxdir = lambda w, input: os.path.dirname(input.taxonomy),
run:
## TODO: make a new yaml just for the sample
shell(f"""opal_stats.py \
--input_dir $(pwd)/{params.datadir} \
--output_dir $(pwd)/{params.outputdir} \
--yaml $(pwd)/{input.biobox} \
--volume $(pwd)/{params.taxdir}:/biobox/share/taxonomy/:ro \
--volume $(pwd)/{params.dbdir}:/exchange/db:ro \
quay.io/sourmash.bio/sourmash:latest
""")
### Rules for opal workflow (calculating sourmash profiles)
rule run_opal_workflow:
output:
#"outputs/{sample}/opal_output/results.html",
"outputs/{sample}/quay.io-sourmash.bio-sourmash-latest/all_results.profile",
input:
data = input_for_sample,
biobox = "data/biobox_{sample}.yaml",
gs = "data/gs_{sample}.profile",
#db = "db/genbank-k51.lca.json.gz",
#db = "outputs/sbt/refseq-k51.sbt.zip",
db = "outputs/lca/refseq-k51-s10000.lca.json.gz",
acc2taxid_gb = "inputs/ncbi_taxonomy/accession2taxid/nucl_gb.accession2taxid.gz",
acc2taxid_wgs = "inputs/ncbi_taxonomy/accession2taxid/nucl_wgs.accession2taxid.gz",
taxid4index = "outputs/lca/taxid4index.csv",
taxonomy = "inputs/ncbi_taxonomy/names.dmp",
params:
datadir = datadir_for_sample,
outputdir = lambda w: f"outputs/{w.sample}",
dbdir = lambda w, input: os.path.dirname(input.db),
taxdir = lambda w, input: os.path.dirname(input.taxonomy),
shell: """
opal_workflow.py \
quay.io/sourmash.bio/sourmash:latest \
--labels "sourmash" \
--input_dir $(pwd)/{params.datadir} \
--output_dir $(pwd)/{params.outputdir} \
--yaml $(pwd)/{input.biobox} \
--volume $(pwd)/{params.taxdir}:/biobox/share/taxonomy/:ro \
--volume $(pwd)/{params.dbdir}:/exchange/db:ro \
--gold_standard_file $(pwd)/{input.gs} \
--plot_abundances \
--desc "{wildcards.sample}"
"""
### Generate an OPAL report comparing with other tools
rule run_opal_report:
output:
"outputs/{sample}/opal_output_all/results.html",
input:
"outputs/{sample}/quay.io-sourmash.bio-sourmash-latest/all_results.profile",
gs = "data/gs_{sample}.profile",
profiles = lambda w: list(PROFILES[w.sample].keys())
params:
outputdir = lambda w: f"outputs/{w.sample}/opal_output_all/",
desc = "{sample}",
labels = lambda w, input: "sourmash," + ",".join(PROFILES[w.sample][path] for path in input.profiles)
shell: """
opal.py \
--gold_standard_file $(pwd)/{input.gs} \
--output_dir $(pwd)/{params.outputdir} \
--desc='{params.desc}' \
-l '{params.labels}' \
--metrics_plot_rel c,p,l,w \
--metrics_plot_abs c,p \
--filter 1 \
{input[0]} \
{input.profiles}
"""