-
Notifications
You must be signed in to change notification settings - Fork 39
/
Copy pathtrain_text_only.py
133 lines (96 loc) · 3.12 KB
/
train_text_only.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import math
import gzip
import random
import tqdm
import numpy as np
import torch
from torch.optim import Adam
from torch import Tensor
from torch.utils.data import DataLoader, Dataset
from transfusion_pytorch import Transfusion
# constants
NUM_BATCHES = int(1e5)
BATCH_SIZE = 4
GRAD_ACCUM_EVERY = 4
LEARNING_RATE = 1e-4
VALIDATE_EVERY = 100
PRIME_LENGTH = 64
GENERATE_EVERY = 500
GENERATE_LENGTH = 256
SEQ_LEN = 256
# helpers
def exists(v):
return v is not None
def divisible_by(num, den):
return (num % den) == 0
def cycle(loader):
while True:
for data in loader:
yield data
def decode_token(token):
return str(chr(max(32, token)))
def decode_tokens(tokens):
return "".join(list(map(decode_token, tokens)))
# the minGRU char language model
model = Transfusion(
num_text_tokens = 256,
transformer = dict(
dim = 384,
depth = 8,
dim_head = 64,
heads = 8,
attn_laser = True
)
).cuda()
# prepare enwik8 data
with gzip.open('./data/enwik8/enwik8.gz') as file:
data = np.frombuffer(file.read(int(95e6)), dtype = np.uint8).copy()
np_train, np_valid = np.split(data, [int(90e6)])
data_train, data_val = torch.from_numpy(np_train), torch.from_numpy(np_valid)
class TextSamplerDataset(Dataset):
def __init__(self, data, seq_len):
super().__init__()
self.data = data
self.seq_len = seq_len
self.data_length = data.shape[0]
def __len__(self):
return self.data.size(0) // self.seq_len
def __getitem__(self, index):
rand_start = torch.randint(0, self.data_length - self.seq_len, (1,))
full_seq = self.data[rand_start : rand_start + self.seq_len + 1].long()
return full_seq
train_dataset = TextSamplerDataset(data_train, SEQ_LEN)
val_dataset = TextSamplerDataset(data_val, SEQ_LEN)
train_loader = DataLoader(train_dataset, batch_size = BATCH_SIZE)
val_loader = DataLoader(val_dataset, batch_size = BATCH_SIZE)
# optimizer
optim = Adam(model.parameters(), lr = LEARNING_RATE)
train_loader = cycle(train_loader)
val_loader = cycle(val_loader)
# training
for i in tqdm.tqdm(range(NUM_BATCHES), mininterval = 10.0, desc = "training"):
model.train()
for _ in range(GRAD_ACCUM_EVERY):
data = next(train_loader)
loss = model(data.cuda())
(loss / GRAD_ACCUM_EVERY).backward()
print(f'loss: {loss.item():.3f}')
torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5)
optim.step()
optim.zero_grad()
if divisible_by(i, VALIDATE_EVERY):
model.eval()
with torch.no_grad():
valid_data = next(val_loader)
loss = model(valid_data.cuda())
print(f'\nvalid loss: {loss.item():.3f}\n')
if divisible_by(i, GENERATE_EVERY):
model.eval()
inp = random.choice(val_dataset)[:PRIME_LENGTH]
inp = inp.cuda()
prime = decode_tokens(inp)
print(f"\nprime: {prime}\n")
prompt = inp[None, ...]
sampled = model.generate_text_only(prompt, GENERATE_LENGTH)
base_decode_output = decode_tokens(sampled[0])
print(f"\ngenerated: {base_decode_output}\n")