-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrobust_autoencoder.py
523 lines (453 loc) · 21.3 KB
/
robust_autoencoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
from __future__ import print_function
from __future__ import division
from __future__ import absolute_import
import argparse
import json
import keras
import numpy as np
import os
import random
import time
import copy as cp
# params for ecg_seg & save file path
STEP = 256
POST_FIX_INDEX = -10 # file_path[-10:] 'AXXXX.mat'
class RobustAutoencoder():
def __init__(self):
# data storage
self.train = None
self.dev = None
self.train_scaled = None
self.dev_scaled = None
self.train_noisy = None
self.dev_noisy = None
self.train_recon = None
self.dev_recon = None
self.train_mcc = None
self.dev_mcc = None
# model storage
self.model = None
self.history = None
def cal_pixel_mse(self, origin, rec):
'''
calculate the mse errors for origin and reconstructed data
'''
origin = np.array(origin)
rec = np.array(rec)
sample, _ = origin.shape
mse = []
for i in range(sample):
mse.append(np.mean((origin[i]-rec[i])**2))
return np.array(mse), np.mean(mse)
def load_dataset_path(self, data_json):
'''
given json file to return the ecgs, lables and orignal path
----
params
data_json: str. path of the json file
-----
return
'''
import tqdm
with open(data_json, 'r') as fid:
data = [json.loads(l) for l in fid]# just load the filename in data
labels = []; ecgs = []; paths = []
for d in tqdm.tqdm(data):
paths.append(d['ecg'])
labels.append(d['labels'])
ecgs.append(self.load_ecg_path(d['ecg']))## load .mat file
return ecgs, labels, paths
def load_ecg_path(self, record):
'''
load .mat files and reshape for given STEP=256
'''
import scipy.io as sio
if os.path.splitext(record)[1] == ".npy":
ecg = np.load(record)
elif os.path.splitext(record)[1] == ".mat":
ecg = sio.loadmat(record[-35:])['val'].squeeze()# hack for different path
else: # Assumes binary 16 bit integers
with open(record, 'r') as fid:
ecg = np.fromfile(fid, dtype=np.int16)
trunc_samp = STEP * int(len(ecg) / STEP)
return ecg[:trunc_samp]
def load_dataset(self, data_json):
'''
return segmented ecgs and lables
'''
import tqdm
with open(data_json, 'r') as fid:
data = [json.loads(l) for l in fid]# just load the filename in data
labels = []; ecgs = []
for d in tqdm.tqdm(data):
labels.extend(d['labels'])
ecgs.extend(self.load_ecg(d['ecg']))## load .mat file
return ecgs, labels
def load_ecg(self, record):
'''
load .mat files and reshape for given STEP=256
'''
import scipy.io as sio
if os.path.splitext(record)[1] == ".npy":
ecg = np.load(record)
elif os.path.splitext(record)[1] == ".mat":
ecg = sio.loadmat(record[-35:])['val'].squeeze()# hack for different path
else: # Assumes binary 16 bit integers
with open(record, 'r') as fid:
ecg = np.fromfile(fid, dtype=np.int16)
trunc_samp = STEP * int(len(ecg) / STEP)
return ecg[:trunc_samp].reshape(-1,STEP)
def scale_input(self, data):
'''
scale the data to [0, 1]
'''
data_scaled = [(d - np.min(d))/(np.max(d)-np.min(d)) for d in data]
scales = [(np.max(d)-np.min(d)) for d in data]
bias = [np.min(d) for d in data]
return np.array(data_scaled), np.array(scales), np.array(bias)
def scale_back(self, data, scales, bias):
origin_scale = []
for d, s, b in zip(data, scales, bias):
origin_scale.append(d*s + b)
return np.array(origin_scale)
def transform(self, origin, model):
'''
transform the orignal ecg sginal using the given model
----
params
origin: list(list) ecg signals.
model: trained autoencoder
-----
return
tansformed: ndarray of transformed data
'''
transformed = []
for data in origin:
# reshape and scale
data = data.reshape(-1,STEP)
data_scaled, scales, bias = self.scale_input(data)
# model predict and scale back
origin_scale = scale_back(model.predict(data_scaled), scales, bias)
transformed.append(origin_scale.reshape(-1,1).squeeze())
return np.array(transformed).squeeze() # keep same dimension as origin[0] data
def add_noise_snr(self, signals, des_snr, noise_type = 4):
'''
add noise to the signal for a given SNR (des_snr)
ref: https://stackoverflow.com/questions/14058340/adding-noise-to-a-signal-in-python
------
params
signals: ndarray original signals
signal_type: int 0: gaussain; 1: cauchy; 2: possion ;
3: speckle: Multiplicative noise using out = image + n*image
4: mix of 0-1 (default)
des_snr: int desired SNR
-----
return
noisy_signals: ndarray
'''
noisy_signals = []
for sig in signals:
# get the power of signal and desired power of noise
sig_power = np.sum(np.array(sig)**2)/len(sig)
des_noise_power = sig_power/np.math.pow(10,des_snr/10)
# generate noise and scale accordingly based on desired SNR
noise = self.generate_signals(np.array(sig), noise_type)
noise_power = np.sum(np.array(noise)**2)/len(noise)
noise = np.sqrt(des_noise_power/noise_power)*noise
# append
noisy_signals.append(sig + noise)
return np.array(noisy_signals)
def generate_signals(self, sig, noise_type = 4):
'''
generate noises for given sig and noise type
'''
# TODO: add different noises
if noise_type == 0: #gaussian
noise = np.random.normal(size=sig.shape)
elif noise_type == 1: # cauchy
from scipy.stats import cauchy
noise = cauchy.rvs(size=sig.shape)
elif noise_type == 2: # poisson
noise = np.random.poisson(size=sig.shape)
elif noise_type == 3: # speckle: Multiplicative noise using out = image + n*image,where n is gaussion noise with specified mean & variance.
noise = np.random.randn(size=sig.shape)*sig
else:# mix of 0 & 1
from scipy.stats import cauchy
noise = np.random.normal(size=sig.shape) + cauchy.rvs(size=sig.shape)
return noise
def mcc_loss(self, y_actual, y_predicted, sigma = 0.2):
import keras.backend as K
diff = y_actual-y_predicted
mcc_loss = -1/K.sqrt(2*K.variable(np.pi))/sigma*K.exp(-diff**2/2/K.variable(sigma)**2)
return K.mean(mcc_loss)
def build_encoder(self, params):
input_size = params['input_size']
hidden_size = params['hidden_size']
lr = params['lr']
lambda_w = params['lambda_w']
from keras.models import Model
from keras.layers import Input
from keras.layers.core import Dense
from keras.regularizers import l2
x = Input(shape=(input_size,))
hidden_1 = Dense(hidden_size, activation='relu', kernel_regularizer=l2(lambda_w), bias_regularizer=l2(lambda_w))(x)
#h = Dense(code_size, activation='relu')(hidden_1)
hidden_2 = Dense(hidden_size, activation='relu', kernel_regularizer=l2(lambda_w), bias_regularizer=l2(lambda_w))(hidden_1)
r = Dense(input_size, activation='sigmoid',kernel_regularizer=l2(lambda_w), bias_regularizer=l2(lambda_w))(hidden_2)
self.model = Model(inputs=x, outputs=r)
from keras.optimizers import Adam
optimizer = Adam(
lr = lr)
if params['loss'] == 'mcc':
self.model.compile(optimizer='adam', loss = self.mcc_loss)
else:
self.model.compile(optimizer='adam', loss = 'mse')
def train_encoder(self, params):
# pass params
MAX_EPOCHS = params['MAX_EPOCHS']
batch_size = params['batch_size']
mcc_model_name = params['model_name']
# callbacks
from keras.callbacks import EarlyStopping, ModelCheckpoint, ReduceLROnPlateau
stopping = EarlyStopping(monitor='val_loss', mode='min', min_delta= 0.00005, verbose=1, patience=int(0.15*MAX_EPOCHS))
checkpointer = ModelCheckpoint(filepath=mcc_model_name, monitor='val_loss', save_best_only=True)
reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=2,
verbose=0, mode='auto', cooldown=0, min_lr=1e-6)
# fit
if params['train_type'] == 0:
self.history = self.model.fit(self.train_scaled, self.train_scaled, batch_size=batch_size, epochs=MAX_EPOCHS,
shuffle = True, verbose=1, validation_data=(self.dev_scaled, self.dev_scaled),
callbacks = [checkpointer, reduce_lr, stopping])
if params['train_type'] == 1:# train with noisy-clean pair
self.history = self.model.fit(self.train_noisy, self.train_scaled, batch_size=batch_size, epochs=MAX_EPOCHS,
shuffle = True, verbose=1, validation_data=(self.dev_noisy, self.dev_scaled),
callbacks = [checkpointer, reduce_lr, stopping])
if params['train_type'] == 2:
self.history = self.model.fit(self.train_noisy, self.train_noisy, batch_size=batch_size, epochs=MAX_EPOCHS,
shuffle = True, verbose=1, validation_data=(self.dev_noisy, self.dev_noisy),
callbacks = [checkpointer, reduce_lr, stopping])
def reconstruct(self, params):
from keras.models import load_model
if params['loss'] == 'mcc':
saved_model = load_model(params['model_name'], custom_objects={'mcc_loss': self.mcc_loss})
else:
saved_model = load_model(params['model_name'])
if params['train_type'] == 0:
self.train_recon = saved_model.predict(self.train_noisy)
self.dev_recon = saved_model.predict(self.dev_noisy)
if params['train_type'] == 1 :
self.train_recon = saved_model.predict(self.train_noisy)
self.dev_recon = saved_model.predict(self.dev_noisy)
if params['train_type'] == 2 :
self.train_recon = saved_model.predict(self.train_noisy)
self.dev_recon = saved_model.predict(self.dev_noisy)
def transform_segmented(self, origin, segments, model):
'''
transform the segmented ecg sginal using the given model
----
params
origin: list(list) ecg signals.
segments: list(list) segmented ecg signal based on STEP = 256
model: trained autoencoder
-----
return
tansformed: ndarray of transformed data
'''
transformed = []
start = 0
for data in origin:
# reshape and scale
data_cp = cp.copy(data)
data_cp = data_cp.reshape(-1,STEP)
_, scales, bias = self.scale_input(data_cp)
# model predict and scale back
data_scaled = segments[start:start+len(data_cp)]
start += len(data_cp)
origin_scale = self.scale_back(model.predict(data_scaled), scales, bias)
transformed.append(origin_scale.reshape(-1,1).squeeze())
return np.array(transformed).squeeze() # keep same dimension as origin[0] data
def scale_back_noisy(self, origin, segments):
'''
transform the segmented ecg sginal using the given model
----
params
origin: list(list) ecg signals.
segments: list(list) segmented ecg signal based on STEP = 256
-----
return
tansformed: ndarray of transformed data
'''
transformed = []
start = 0
for data in origin:
# reshape and scale
data_cp = cp.copy(data)
data_cp = data_cp.reshape(-1,STEP)
_, scales, bias = self.scale_input(data_cp)
# model predict and scale back
data_scaled = segments[start:start+len(data_cp)]
start += len(data_cp)
origin_scale = self.scale_back(data_scaled, scales, bias)
transformed.append(origin_scale.reshape(-1,1).squeeze())
return np.array(transformed).squeeze() # keep same dimension as origin[0] data
def transform(self, origin, model):
'''
transform the orignal ecg sginal using the given model
----
params
origin: list(list) ecg signals.
model: trained autoencoder
-----
return
tansformed: ndarray of transformed data
'''
transformed = []
origin = np.array(origin)
for data in origin:
# reshape and scale
data_cp = cp.copy(data)
data_cp = data_cp.reshape(-1,STEP)
data_scaled, scales, bias = self.scale_input(data_cp)
# model predict and scale back
origin_scale = self.scale_back(model.predict(data_scaled), scales, bias)
transformed.append(origin_scale.reshape(-1,1).squeeze())
return np.array(transformed).squeeze() # keep same dimension as origin[0] data
def save_transformed(self, path, data, origin_path, experiment_name= 'e'):
'''
save the transformed data to the given path
--------
params:
path: str the path to store the transformed files
data: ndarray transformed data
origin_path: original path and name
experiemnt_name: str identifier for certer experiments
'''
import scipy.io as sio
save_dir = self.make_save_dir(path, experiment_name)
for d, origin in zip(data, origin_path):
file_name = self.get_filename_for_saving(save_dir, origin)
sio.savemat(file_name, {'val': d})
return
def make_save_dir(self, dirname, experiment_name):
save_dir = os.path.join(dirname, experiment_name)
if not os.path.exists(save_dir):
os.makedirs(save_dir)
return save_dir
def get_filename_for_saving(self, save_dir, origin):
return os.path.join(save_dir, origin[POST_FIX_INDEX:])
def save_json(self, json_path, mat_file_path, file_names, labels, experiment_name = 'e'):
'''
params:
---------------
json_path: str the path and name to store the json file
mat_file_path: str the path of previous stored .mat file
file_names: list(str) the names of original .mat file
labels: list(list(str)) the label for each seg (STEP=256) of ecg signals
returns:
--------------
None
'''
with open(json_path, 'w') as fid:
for name, label in zip(file_names, labels):
save_dir = os.path.join(mat_file_path, experiment_name)
datum = { 'ecg' : save_dir+'/'+name[POST_FIX_INDEX:],
'labels': label}
json.dump(datum, fid)
fid.write('\n')
def store_results(self, params):
'''
store noisy data;
nosiy data mse reconstructed ;
noisy data mcc reconstructed;
origin data mcc reconstructed;
'''
from keras.models import load_model
if params['loss'] == 'mcc':
saved_model = load_model(params['model_name'], custom_objects={'mcc_loss': self.mcc_loss})
else:
saved_model = load_model(params['model_name'])
self.train = self.load_dataset_path(params['data_json'])#train[0]: ecg_data train[1]: labels train[2]:origin path
self.dev = self.load_dataset_path(params['dev_json'])
## to be saved
self.train_noisy = self.scale_back_noisy(self.train[0], self.train_noisy)
self.dev_noisy = self.scale_back_noisy(self.dev[0], self.dev_noisy)
#save_transformed(path_noisy_train, train_mix_db30, train_path[2])
#save_json(train_json, 'examples/'+ path_noisy_train, train_path[2], train_path[1])
self.save_transformed(params['store_data_folder'], self.train_noisy,
self.train[2], 'train_'+ params['experiment_name'])
self.save_json(params['store_json']+'_train'+'.json', params['store_data_folder'],
self.train[2], self.train[1], 'train_'+params['experiment_name'])
self.save_transformed(params['store_data_folder'], self.dev_noisy, self.dev[2],
'dev_'+ params['experiment_name'])
self.save_json(params['store_json']+'_dev'+'.json', params['store_data_folder'],
self.dev[2], self.dev[1], 'dev_'+params['experiment_name'])
self.train_recon = self.scale_back_noisy(self.train[0], self.train_recon)
self.dev_recon = self.scale_back_noisy(self.dev[0], self.dev_recon)
#save_transformed(path_noisy_train_mcc, train_mix_db30_mcc_transformed, train_path[2])
#save_json(mse_train_json, 'examples/'+ path_noisy_train_mse, train_path[2], train_path[1])
self.save_transformed(params['store_data_folder'], self.train_recon,
self.train[2], 'train_recon_'+ params['experiment_name'])
self.save_json(params['store_json']+'_train_recon'+'.json', params['store_data_folder'],
self.train[2], self.train[1], 'train_recon_'+params['experiment_name'])
self.save_transformed(params['store_data_folder'], self.dev_recon, self.dev[2],
'dev_recon_'+ params['experiment_name'])
self.save_json(params['store_json']+'_dev_recon'+'.json', params['store_data_folder'],
self.dev[2], self.dev[1], 'dev_recon_'+params['experiment_name'])
self.train_trans = self.transform(self.train[0], saved_model)
self.dev_trans = self.transform(self.dev[0], saved_model)
#save_transformed(path_origin_train_mcc, train_origin_mcc_transformed, train_path[2])
#save_json(mcc_train_json, 'examples/'+ path_origin_train_mcc, train_path[2], train_path[1])
self.save_transformed(params['store_data_folder'], self.train_trans,
self.train[2], 'train_trans_'+ params['experiment_name'])
self.save_json(params['store_json']+'_train_trans'+'.json', params['store_data_folder'],
self.train[2], self.train[1], 'train_trans_'+params['experiment_name'])
self.save_transformed(params['store_data_folder'], self.dev_trans, self.dev[2],
'dev_trans_'+ params['experiment_name'])
self.save_json(params['store_json']+'_dev_trans'+'.json', params['store_data_folder'],
self.dev[2], self.dev[1], 'dev_trans_'+params['experiment_name'])
if __name__ == "__main__":
# initial parmas
train_jsons = []
dev_jsons = []
tran_json_prefix = ['_train_','_train_recon']
dev_json_prefix = ['_dev_','_dev_recon']
params = {
'data_json': "examples/cinc17/train.json",
'dev_json': "examples/cinc17/dev.json",
'des_snr' : 20,
'noisy_type': 4,
'train_type': 1, #0: clean-clean 1: noisy-clean 2: noisy-noisy
'loss': 'mcc',
'MAX_EPOCHS': 80,
'batch_size': 128,
'input_size': 256,
'hidden_size': 64,
'lr': 0.01,
'lambda_w': 4e-5
}
# update file path based on params
params['store_data_folder'] = 'exmaples/cinc17/mcc_transformed/'
params['experiment_name'] = 'noisy'+str(params['noisy_type'])+'_db'+str(params['des_snr'])+'_'+params['loss']
params['model_name'] = 'autoencoder_model/'+'train'+ str(params['train_type'])+'_'+params['experiment_name']+ '_autoencoder.h5'
params['store_json'] = 'examples/cinc17/'+params['experiment_name']
for t,d in zip(tran_json_prefix, dev_json_prefix):
train_jsons.append(params['store_json'] + t +'.json')
dev_jsons.append(params['store_json'] + t +'.json')
# load origin data
encoder = RobustAutoencoder()
encoder.train_scaled = encoder.load_dataset(params['data_json'])#train[0]: ecg_data train[1]: labels
encoder.dev_scaled = encoder.load_dataset(params['dev_json'])
# scale the data
encoder.train_scaled, _, _ = encoder.scale_input(encoder.train_scaled[0])
encoder.dev_scaled, _, _ = encoder.scale_input(encoder.dev_scaled[0])
# add noisy
encoder.train_noisy = encoder.add_noise_snr(encoder.train_scaled, des_snr=params['des_snr'], noise_type=params['noisy_type'])
encoder.dev_noisy = encoder.add_noise_snr(encoder.dev_scaled, des_snr=params['des_snr'], noise_type=params['noisy_type'])
# build autoencoder
encoder.build_encoder(params)
# train the autoencoder
encoder.train_encoder(params)
# reconstruct the noisy signals
encoder.reconstruct(params)
# store the reconstructed/noisy signals
encoder.store_results(params)