-
Notifications
You must be signed in to change notification settings - Fork 20
/
croppingDataset.py
228 lines (178 loc) · 7.97 KB
/
croppingDataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import os
import torch.utils.data as data
import cv2
import math
import numpy as np
from augmentations import CropAugmentation
MOS_MEAN = 2.95
MOS_STD = 0.8
RGB_MEAN = (0.485, 0.456, 0.406)
RGB_STD = (0.229, 0.224, 0.225)
class TransformFunction(object):
def __call__(self, sample,image_size):
image, annotations = sample['image'], sample['annotations']
scale = float(image_size) / float(min(image.shape[:2]))
h = round(image.shape[0] * scale / 32.0) * 32
w = round(image.shape[1] * scale / 32.0) * 32
resized_image = cv2.resize(image,(int(w),int(h))) / 256.0
rgb_mean = np.array(RGB_MEAN, dtype=np.float32)
rgb_std = np.array(RGB_STD, dtype=np.float32)
resized_image = resized_image.astype(np.float32)
resized_image -= rgb_mean
resized_image = resized_image / rgb_std
scale_height = float(resized_image.shape[0]) / image.shape[0]
scale_width = float(resized_image.shape[1]) / image.shape[1]
transformed_bbox = {}
transformed_bbox['xmin'] = []
transformed_bbox['ymin'] = []
transformed_bbox['xmax'] = []
transformed_bbox['ymax'] = []
MOS = []
for annotation in annotations:
transformed_bbox['xmin'].append(math.floor(float(annotation[1]) * scale_width))
transformed_bbox['ymin'].append(math.floor(float(annotation[0]) * scale_height))
transformed_bbox['xmax'].append(math.ceil(float(annotation[3]) * scale_width))
transformed_bbox['ymax'].append(math.ceil(float(annotation[2]) * scale_height))
MOS.append((float(annotation[-1]) - MOS_MEAN) / MOS_STD)
resized_image = resized_image.transpose((2, 0, 1))
return {'image': resized_image, 'bbox': transformed_bbox, 'MOS': MOS}
class GAICD(data.Dataset):
def __init__(self, image_size=256, dataset_dir='dataset/GAIC/', set = 'train',
transform=TransformFunction(), augmentation=False):
self.image_size = float(image_size)
self.dataset_dir = dataset_dir
self.set = set
image_lists = os.listdir(self.dataset_dir + 'images/' + set)
self._imgpath = list()
self._annopath = list()
for image in image_lists:
self._imgpath.append(os.path.join(self.dataset_dir, 'images', set, image))
self._annopath.append(os.path.join(self.dataset_dir, 'annotations', set, image[:-3]+"txt"))
self.transform = transform
if augmentation:
self.augmentation = CropAugmentation()
else:
self.augmentation = None
def __getitem__(self, idx):
image = cv2.imread(self._imgpath[idx])
with open(self._annopath[idx],'r') as fid:
annotations_txt = fid.readlines()
annotations = list()
for annotation in annotations_txt:
annotation_split = annotation.split()
if float(annotation_split[4]) != -2:
annotations.append([float(annotation_split[0]),float(annotation_split[1]),float(annotation_split[2]),float(annotation_split[3]),float(annotation_split[4])])
if self.augmentation:
image, annotations = self.augmentation(image, annotations)
# to rgb
image = image[:, :, (2, 1, 0)]
sample = {'image': image, 'annotations': annotations}
if self.transform:
sample = self.transform(sample,self.image_size)
return sample
def __len__(self):
return len(self._imgpath)
class TransformFunctionTest(object):
def __call__(self, image, image_size):
scale = float(image_size) / float(min(image.shape[:2]))
h = round(image.shape[0] * scale / 32.0) * 32
w = round(image.shape[1] * scale / 32.0) * 32
resized_image = cv2.resize(image,(int(w),int(h))) / 256.0
rgb_mean = np.array(RGB_MEAN, dtype=np.float32)
rgb_std = np.array(RGB_STD, dtype=np.float32)
resized_image = resized_image.astype(np.float32)
resized_image -= rgb_mean
resized_image = resized_image / rgb_std
scale_height = image.shape[0] / float(resized_image.shape[0])
scale_width = image.shape[1] / float(resized_image.shape[1])
bboxes = generate_bboxes(resized_image)
transformed_bbox = {}
transformed_bbox['xmin'] = []
transformed_bbox['ymin'] = []
transformed_bbox['xmax'] = []
transformed_bbox['ymax'] = []
source_bboxes = list()
for bbox in bboxes:
source_bboxes.append([round(bbox[0] * scale_height),round(bbox[1] * scale_width),round(bbox[2] * scale_height),round(bbox[3] * scale_width)])
transformed_bbox['xmin'].append(bbox[1])
transformed_bbox['ymin'].append(bbox[0])
transformed_bbox['xmax'].append(bbox[3])
transformed_bbox['ymax'].append(bbox[2])
resized_image = resized_image.transpose((2, 0, 1))
return resized_image,transformed_bbox,source_bboxes
def generate_bboxes(image):
bins = 12.0
h = image.shape[0]
w = image.shape[1]
step_h = h / bins
step_w = w / bins
annotations = list()
for x1 in range(0,4):
for y1 in range(0,4):
for x2 in range(8,12):
for y2 in range(8,12):
if (x2-x1)*(y2-y1)>0.4999*bins*bins and (y2-y1)*step_w/(x2-x1)/step_h>0.5 and (y2-y1)*step_w/(x2-x1)/step_h<2.0:
annotations.append([float(step_h*(0.5+x1)),float(step_w*(0.5+y1)),float(step_h*(0.5+x2)),float(step_w*(0.5+y2))])
return annotations
def generate_bboxes_16_9(image):
h = image.shape[0]
w = image.shape[1]
h_step = 9
w_step = 16
annotations = list()
for i in range(14,30):
out_h = h_step*i
out_w = w_step*i
if out_h < h and out_w < w and out_h*out_w>0.4*h*w:
for w_start in range(0,w-out_w,w_step):
for h_start in range(0,h-out_h,h_step):
annotations.append([float(h_start),float(w_start),float(h_start+out_h-1),float(w_start+out_w-1)])
return annotations
def generate_bboxes_4_3(image):
h = image.shape[0]
w = image.shape[1]
h_step = 12
w_step = 16
annotations = list()
for i in range(14,30):
out_h = h_step*i
out_w = w_step*i
if out_h < h and out_w < w and out_h*out_w>0.4*h*w:
for w_start in range(0,w-out_w,w_step):
for h_start in range(0,h-out_h,h_step):
annotations.append([float(h_start),float(w_start),float(h_start+out_h-1),float(w_start+out_w-1)])
return annotations
def generate_bboxes_1_1(image):
h = image.shape[0]
w = image.shape[1]
h_step = 12
w_step = 12
annotations = list()
for i in range(14,30):
out_h = h_step*i
out_w = w_step*i
if out_h < h and out_w < w and out_h*out_w>0.4*h*w:
for w_start in range(0,w-out_w,w_step):
for h_start in range(0,h-out_h,h_step):
annotations.append([float(h_start),float(w_start),float(h_start+out_h-1),float(w_start+out_w-1)])
return annotations
class setup_test_dataset(data.Dataset):
def __init__(self, image_size=256.0,dataset_dir='testsetDir', transform=TransformFunctionTest()):
self.image_size = float(image_size)
self.dataset_dir = dataset_dir
image_lists = os.listdir(self.dataset_dir)
self._imgpath = list()
self._annopath = list()
for image in image_lists:
self._imgpath.append(os.path.join(self.dataset_dir, image))
self.transform = transform
def __getitem__(self, idx):
image = cv2.imread(self._imgpath[idx])
# to rgb
image = image[:, :, (2, 1, 0)]
if self.transform:
resized_image,transformed_bbox,source_bboxes = self.transform(image,self.image_size)
sample = {'imgpath': self._imgpath[idx], 'image': image, 'resized_image': resized_image, 'tbboxes':transformed_bbox , 'sourceboxes': source_bboxes}
return sample
def __len__(self):
return len(self._imgpath)