-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdeproject_sbp.py
executable file
·708 lines (644 loc) · 25.8 KB
/
deproject_sbp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
#!/usr/bin/env python3
#
# Copyright (c) 2016-2017 Aaron LI
# MIT license
#
# Created: 2016-06-10
#
# Change logs:
# 2017-04-02:
# * Fix reference journal
# 2016-07-17:
# * Ignore non-finite numbers of deprojected density for plot
# 2016-07-15:
# * Do not repeat electron number density calculation
# 2016-07-11:
# * Use a default config to allow a minimal user config
# 2016-07-10:
# * Use class 'SmoothSpline' from module
# 2016-07-04:
# * Use model's "report()" method
# * Add config "sbpexp_rcut"
# * Rename config "sbpexp_rcut*" to "sbpexp_rignore*"
# * Save profile radii in unit "kpc"
# * Update to that cooling function profile's radius in unit "kpc"
# 2016-06-27:
# * Minor cleanups
# * Remove obsolete class "DeprojectSBP"
# * Fit smoothing spline to SBP and cooling function profiles by
# calling the R `mgcv::gam()`: "fit_spline()" and "eval_spline()"
# * Update "plot()" to also plot the fitted smoothing spline
# 2016-06-26:
# * Split out method "save()" for class "BrightnessProfile"
# * Split classes 'FitModel', 'ABModel' and 'PLCModel' into separate
# module 'fitting_models.py'
# 2016-06-25:
# * Use 'InterpolatedUnivariateSpline' instead of 'interp1d'
# 2016-06-24:
# * Move class 'ChandraPixel' to module 'astro_params.py'
# * Split class 'Projection' to a separate module 'projection.py'
# * Move class 'DensityProfile' to tool 'calc_mass_potential.py'
# * Split class 'AstroParams' to separate module 'astro_params.py'
# 2016-06-23:
# * Add configuration parameter 'sbpexp_rcut'
# * Allow extrapolate the cooling function profile
# * Add plot function to class 'BrightnessProfile'
# * Update sample configuration file
# * Remove obsolete class 'SurfaceBrightnessProfile'
# 2016-06-22:
# * Add class 'DensityProfile', the inversion to 'BrightnessProfile'
# * Add classes 'AstroParams' and 'BrightnessProfile'
# * Add class 'ChandraPixel'
# * Update documentation
# 2016-06-21:
# * Add document about the gas density derivation
# 2016-06-20:
# * Use configuration file instead of the tedious command line arguments
# 2016-06-16:
# * Add methods 'save()', 'report()' and 'plot()' to class 'SBP'
# 2016-06-15:
# * Add command line arguments
# * Add class 'SBP' for SBP background subtraction and extrapolation
# 2016-06-14:
# * Add class 'PLCModel' based on 'FitModel'
# * Split class 'FitModel' from 'ABModel'
# 2016-06-13:
# * Add class 'ABModel' to support data scaling
# * Implement primitive SBP deprojection approach for class 'DeprojectSBP'
#
"""
Deproject the 2D surface brightness profile (SBP) into ???
The SBP deprojection is performed using a non-parametric approach with
regularization which add the constraint that the 3D gas density profile
should be smooth.
=======================================================================
Surface brightness (`SUR_FLUX` column of the dmextract'ed radial profile):
Brightness: [ photon s^-1 cm^-2 pixel^-2 ]
where the 'cm^-2' is due to the instrumental effective area, and the
'pixel^-2' is corresponding to the solid angle with respect to the source
(i.e., [ arcsec^-2 ]).
The flux has dimension:
Flux: [ photon s^-1 cm^-2 ]
therefore, the dimension of brightness can also be expressed as:
Brightness: [ Flux pixel^-2 ] = [ Flux sr^-1 ]
The instrument and (time-normalized) exposure map has dimension:
[ count photon^-1 cm^2 ]
which is used to convert the instrument-specific counts image into physical-
meaningful flux unit.
Emission measure:
EM = \int n_e n_H dV ~= (n_e^2 / ratio_eH) V [ cm^-3 ]
where 'ratio_eH' is the ratio of electron density to proton density (n_H).
APEC normalization returned by XSPEC is simply the *emission measure* of
the gas scaled by the distance:
eta = (\int n_e n_H dV) / (4 pi (D_A (1+z))^2)
assuming (ref. [4]):
n_H ~= 0.826 n_e
then the gas density (n_H or n_e) can be calculated.
The flux calculated with the XSPEC `flux` command has dimension:
Flux: [ photon s^-1 cm^-2 ] or [ erg s^-2 cm^-2 ]
When use XSPEC APEC model to calculate the cooling function (Lambda),
its normalization is calculated with EM = 1, therefore:
norm = 1e-14 / (4 pi (D_A (1+z))^2) * EM
= 1e-14 / (4 pi (D_A (1+z))^2) [ cm^-5 ]
where the 'D_A' is the angular diameter distance which can be simply
calculated from its redshift.
With the Galactic absorption (nH), temperature (varies with radius), and
abundance (assumed constant) been set, the cooling function is derived by
using the XSPEC `flux` command.
Therefore, cooling function has dimension:
Lambda: [ Flux EM^-1 ]
By deprojecting the surface brightness, the flux per volume can be derived,
and EM can be further obtained by incorporating the cooling function,
and finally the (3D) gas density can be determined.
(projection): EM * Lambda / A -> Brightness
where 'A' is the solid angle (i.e., area covered by the source).
=======================================================================
References:
[1] Croston et al. 2006, A&A, 459, 1007-1019
[2] McLaughlin, 1999, AJ, 117, 2398-2427
[3] Bouchet, 1995, A&AS, 113, 167
[4] Ettori et al, 2013, Space Science Review, 177, 119-154
[5] AtomDB / APEC model:
* http://www.atomdb.org/faq.php#DensityXSPECnorm
* https://heasarc.gsfc.nasa.gov/docs/xanadu/xspec/manual/XSmodelApec.html
"""
import argparse
import json
from collections import OrderedDict
import astropy.units as au
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
from matplotlib.figure import Figure
from configobj import ConfigObj
from astro_params import AstroParams, ChandraPixel
from projection import Projection
from fitting_models import PLCModel
from spline import SmoothSpline
plt.style.use("ggplot")
config_default = """
## Configuration for `deproject_sbp.py`
# config file for SBP fitting (e.g., sbpfit.conf)
sbpfit_config = sbpfit.conf
# input cooling function profile
coolfunc_profile = coolfunc_profile.txt
# redshift of the object (for pixel to distance conversion)
#redshift = <REDSHIFT>
## SBP extrapolation
# ignorance radius from which the SBP is fitted for extrapolation,
# specified by the ratio w.r.t sbpfit rc (default: 1.2 * rc)
sbpexp_rignore_ratio = 1.2
# or directly specify the ignorance radius (override above) (unit: pixel)
#sbpexp_rignore = <RIGNORE>
# cut radius to which stop the extrapolation (unit: kpc)
sbpexp_rcut = 3000
# output of the extrapolated SBP
sbpexp_outfile = sbpexp.csv
# extrapolation model information
sbpexp_json = sbpexp.json
# plot of the SBP extrapolation
sbpexp_image = sbpexp.png
## Density profiles
# deprojected 3D electron number density profile
ne_profile = ne_profile.txt
# deprojected 3D gas mass density profile
rho_gas_profile = rho_gas_profile.txt
# image of the density profiles (electron density and/or gas density)
density_profile_image = density_profile.png
"""
class SBP:
"""
X-ray surface brightness profile class.
This class deals with SBP background subtraction and SBP extrapolation.
"""
# input SBP data: [r, r_err, s, s_err]
r = None
r_err = None
s = None
s_err = None
# uniform background been subtracted
bkg = None
# ignorance/minimal radius from which the SBP is fitted to the PLCModel
rignore = None
# cut radius where the extrapolation stops
rcut = None
# PLCModel instance used to extrapolate the SBP
plcmodel = None
def __init__(self, r, r_err=None, s=None, s_err=None, rignore=None):
self.load_data(r=r, r_err=r_err, s=s, s_err=s_err, rignore=rignore)
self.plcmodel = PLCModel(scale=True)
def load_data(self, r, r_err=None, s=None, s_err=None, rignore=None):
if r.ndim == 2 and r.shape[1] == 4:
# 4-column data
self.r = r[:, 0].copy()
self.r_err = r[:, 1].copy()
self.s = r[:, 2].copy()
self.s_err = r[:, 3].copy()
else:
self.r = np.array(r)
self.r_err = np.array(r_err)
self.s = np.array(s)
self.s_err = np.array(s_err)
self.rignore = rignore
def subtract_bkg(self, bkg):
"""
Subtract the uniform background from the brightness.
The value of background can be acquired by fitting the whole
or core-exclude SBP with model consisting of a plain beta model
and a constant.
The "AB model" maybe also applicable.
"""
self.bkg = bkg
self.s -= bkg
self.bkg_subtracted = True
def extrapolate(self, rignore=None, rcut=None):
"""
Extrapolate the SBP by assuming that the outer SBP follows the
following relation:
S_X = A * r^{-alpha},
which can be determined by model fitting.
The SBP is extrapolated to the region where the brightness is
lower than the current observed minimal brightness by one order
of magnitude, and the extrapolated SBP bins have the same width
and relative errors as the last SBP bin observed.
If the 'rcut' is specified, then the SBP extrapolation stops
when exceeds that radius.
Note that the uniform background should be subtracted first.
Return:
* self.r_extrapolated
* self.r_err_extrapolated
* self.s_extrapolated
* self.s_err_extrapolated
* self.mask_extrapolated
"""
if rignore is not None:
self.rignore = rignore
if rcut is not None:
self.rcut = rcut
self.mask = self.r >= self.rignore
self.plcmodel.load_data(xdata=self.r[self.mask],
ydata=self.s[self.mask],
xerr=self.r_err[self.mask],
yerr=self.s_err[self.mask],
update_params=True)
self.plcmodel.set_param("bkg", value=0.0, vary=False)
self.plcmodel.fit()
last_r_err = self.r_err[-1]
last_s = self.s[-1]
last_s_err = self.s_err[-1]
#
r_exp = self.r.tolist()
r_err_exp = self.r_err.tolist()
s_exp = self.s.tolist()
s_err_exp = self.s_err.tolist()
mask_exp = [False] * len(r_exp)
# do extrapolation
r_tmp = r_exp[-1] + 2*r_err_exp[-1]
s_tmp = self.plcmodel.f(r_tmp)
while True:
if rcut is not None and r_tmp > rcut:
break
if rcut is None and (s_tmp < last_s / 10.0):
break
r_exp.append(r_tmp)
r_err_exp.append(last_r_err)
s_exp.append(s_tmp)
s_err_exp.append(s_tmp * last_s_err / last_s)
mask_exp.append(True)
r_tmp = r_exp[-1] + 2*r_err_exp[-1]
s_tmp = self.plcmodel.f(r_tmp)
# convert to numpy array
self.r_extrapolated = np.array(r_exp)
self.r_err_extrapolated = np.array(r_err_exp)
self.s_extrapolated = np.array(s_exp)
self.s_err_extrapolated = np.array(s_err_exp)
self.mask_extrapolated = np.array(mask_exp)
def report(self, outfile=None):
"""
Report the extrapolation model fitting results.
"""
results = OrderedDict([
("bkg", self.bkg),
("bkg_subtracted", self.bkg_subtracted),
("rignore", self.rignore),
("rcut", self.rcut),
("model", self.plcmodel.name),
("fitting", self.plcmodel.report(rtype="fitting")),
("params", self.plcmodel.report(rtype="parameters")),
])
results_json = json.dumps(results, indent=2)
if outfile is None:
print(results_json)
else:
open(outfile, "w").write(results_json+"\n")
def plot(self, ax=None, fig=None):
"""
Make a plot of the SBP extrapolation.
"""
if ax is None:
fig, ax = plt.subplots(1, 1)
# ignored data points
mask_ignore = np.logical_not(self.mask)
if np.sum(mask_ignore) > 0:
ax.errorbar(self.r[mask_ignore], self.s[mask_ignore],
xerr=self.r_err[mask_ignore],
yerr=self.s_err[mask_ignore],
fmt="none", elinewidth=1, capthick=1)
# data points used to fit the PLC model
ax.errorbar(self.r[self.mask], self.s[self.mask],
xerr=self.r_err[self.mask],
yerr=self.s_err[self.mask],
fmt="none", elinewidth=2, capthick=2)
# extrapolated data points
ax.errorbar(self.r_extrapolated[self.mask_extrapolated],
self.s_extrapolated[self.mask_extrapolated],
xerr=self.r_err_extrapolated[self.mask_extrapolated],
yerr=self.s_err_extrapolated[self.mask_extrapolated],
fmt="none", elinewidth=1, capthick=1)
# original data points without background subtraction
eb = ax.errorbar(self.r, self.s+self.bkg,
xerr=self.r_err, yerr=self.s_err,
fmt="none", elinewidth=1, capthick=1)
eb[-1][0].set_linestyle("dashdot")
eb[-1][1].set_linestyle("dashdot")
# PLC model
mask_fit = self.mask_extrapolated.copy()
mask_fit[:len(self.mask)] = self.mask
r_fit = self.r_extrapolated[mask_fit]
s_fit = self.plcmodel.f(r_fit)
ax.plot(r_fit, s_fit, color="black", linestyle="solid")
# adjust layout
r_min = 1.0
r_max = self.r_extrapolated[-1] + self.r_err_extrapolated[-1]
s_min = min(self.s_extrapolated) / 1.2
s_max = max(self.s_extrapolated + self.s_err_extrapolated) * 1.2
ax.set_xscale("log")
ax.set_yscale("log")
ax.set_xlim(r_min, r_max)
ax.set_ylim(s_min, s_max)
# labels
ax.set_xlabel("Radius (%s)" % "pixel")
ax.set_ylabel(r"Surface Brightness (photons/cm$^2$/pixel$^2$/s)")
ax.text(x=r_max/1.2, y=s_max/1.2,
s=r"reduced $\chi^2$: %.2f / %.2f = %.2f" % (
self.plcmodel.fitted.chisqr, self.plcmodel.fitted.nfree,
self.plcmodel.fitted.chisqr/self.plcmodel.fitted.nfree),
horizontalalignment="right", verticalalignment="top")
fig.tight_layout()
return (fig, ax)
def get_data(self):
"""
Get the extrapolated data, for following use.
"""
return np.column_stack([self.r_extrapolated,
self.r_err_extrapolated,
self.s_extrapolated,
self.s_err_extrapolated])
def save(self, outfile):
"""
Save the (extrapolated) SBP to the given output file in CSV format.
"""
df = pd.DataFrame()
df["radius"] = self.r_extrapolated
df["radius_err"] = self.r_err_extrapolated
df["brightness"] = self.s_extrapolated
df["brightness_err"] = self.s_err_extrapolated
df["flag_extrapolation"] = self.mask_extrapolated
flag_fit = np.zeros(self.mask_extrapolated.shape, dtype=bool)
flag_fit[:len(self.mask)] = self.mask
df["flag_fit"] = flag_fit
df.to_csv(outfile, header=True, index=False)
class BrightnessProfile:
"""
Calculate the electron number density and/or gas mass density profile
by deprojecting the observed X-ray surface brightness profile and
incorporating the cooling function profile.
NOTE:
* The radii should have unit [ pixel ] (Chandra pixel)
* The brightness should have unit [ photon s^-1 cm^-2 pixel^-2 ],
i.e., [ Flux pixel^-2 ] (radial profile column `SUR_FLUX`)
"""
# available splines
SPLINES = ["brightness", "cooling_function"]
# allowed density profile types
DENSITY_TYPES = ["electron", "gas"]
# input SBP data: [r, r_err, s, s_err]
r = None
r_err = None
s = None
s_err = None
# redshift of the source
z = None
# `ChandraPixel` instance for unit conversion
pixel = None
# flag to indicate whether the units are converted
units_converted = False
# calculated electron density profile
ne = None
# calculated gas mass density profile
rho_gas = None
# fitted `SmoothSpline` object of the SBP
s_spline = None
# fitted `SmoothSpline` of the cooling function profile
cf_spline = None
def __init__(self, sbp_data, cf_data, z):
self.load_data(data=sbp_data)
self.load_cf_data(data=cf_data)
self.z = z
self.pixel = ChandraPixel(z)
def load_data(self, data):
# 4-column SBP: [r, r_err, brightness, brightness_err]
self.r = data[:, 0].copy()
self.r_err = data[:, 1].copy()
self.s = data[:, 2].copy()
self.s_err = data[:, 3].copy()
def load_cf_data(self, data):
# 2-column cooling function profile
self.cf_radius = data[:, 0].copy()
self.cf_value = data[:, 1].copy()
def convert_units(self):
"""
Convert the units of SBP:
radius: pixel -> cm
brightness: Flux / pixel**2 -> Flux / cm**2
Convert the units of cooling function profile:
radius: kpc -> cm
"""
if not self.units_converted:
cm_per_pixel = self.pixel.get_length().to(au.cm).value
self.r *= cm_per_pixel
self.r_err *= cm_per_pixel
self.s /= cm_per_pixel**2
self.s_err /= cm_per_pixel**2
# cooling function profile: kpc -> cm
self.cf_radius *= au.kpc.to(au.cm)
self.units_converted = True
def get_radius(self):
return (self.r.copy(), self.r_err.copy())
def fit_spline(self, spline, log10=[]):
if spline not in self.SPLINES:
raise ValueError("invalid spline: %s" % spline)
#
if spline == "brightness":
x = self.r
y = self.s
weights = self.s / self.s_err
spl = "s_spline"
elif spline == "cooling_function":
x = self.cf_radius
y = self.cf_value
weights = None
spl = "cf_spline"
setattr(self, spl, SmoothSpline(x=x, y=y, weights=weights))
getattr(self, spl).fit(log10=log10)
def eval_spline(self, spline, x):
"""
Evaluate the specified spline at the supplied positions.
Also check whether the spline was fitted in the log-scale space,
and transform the evaluated values if necessary.
"""
if spline == "brightness":
spl = self.s_spline
elif spline == "cooling_function":
spl = self.cf_spline
else:
raise ValueError("invalid spline: %s" % spline)
return spl.eval(x)
def calc_electron_density(self):
"""
Deproject the surface brightness profile to derive the 3D
electron number density (and then gas mass density) profile
by incorporating the cooling function profile.
unit: [ cm^-3 ] if the units converted for input data
"""
if self.s_spline is None:
self.fit_spline(spline="brightness", log10=["x", "y"])
if self.cf_spline is None:
self.fit_spline(spline="cooling_function", log10=[])
#
s_new = self.eval_spline(spline="brightness", x=self.r)
cf_new = self.eval_spline(spline="cooling_function", x=self.r)
#
projector = Projection(rout=self.r+self.r_err)
s_deproj = projector.deproject(s_new)
# emission measure per unit volume
em_v = s_deproj / cf_new
ne = np.sqrt(em_v * AstroParams.ratio_ne_np)
self.ne = ne
return ne
def calc_gas_density(self):
"""
Calculate the gas mass density based the calculated electron
number density.
unit: [ g cm^-3 ] if the units converted for input data
"""
if self.ne is None:
self.calc_electron_density()
rho_gas = self.ne * AstroParams.mu_e * AstroParams.m_atom
self.rho_gas = rho_gas
return rho_gas
def save(self, density_type, outfile):
if density_type == "electron":
data = np.column_stack([self.r * au.cm.to(au.kpc),
self.r_err * au.cm.to(au.kpc),
self.ne])
header = "radius[kpc] radius_err[kpc] " + \
"electron_number_density[cm^-3]"
elif density_type == "gas":
data = np.column_stack([self.r * au.cm.to(au.kpc),
self.r_err * au.cm.to(au.kpc),
self.rho_gas])
header = "radius[kpc] radius_err[kpc] " + \
"gas_mass_density[g/cm^3]"
else:
raise ValueError("unknown density_type: %s" % density_type)
np.savetxt(outfile, data, header=header)
def plot(self, ax=None, fig=None, density_type="electron"):
if density_type not in self.DENSITY_TYPES:
raise ValueError("invalid density_types: %s" % density_type)
if density_type == "electron":
density = self.ne
d_name = "Deprojected electron number density"
d_unit = "cm$^{-3}$"
else:
density = self.rho_gas
d_name = "Deprojected gas mass density"
d_unit = "g/cm$^3$"
#
if self.units_converted:
# convert from [cm] to [kpc]
r = self.r * au.cm.to(au.kpc)
r_err = self.r_err * au.cm.to(au.kpc)
r_unit = "kpc"
s_unit = "flux/cm$^2$"
else:
r = self.r
r_err = self.r_err
r_unit = "pixel"
s_unit = "flux/pixel$^2$"
#
if ax is None:
fig, ax = plt.subplots(1, 1)
# SBP data points
eb = ax.errorbar(r, self.s, xerr=r_err, yerr=self.s_err,
fmt="none", elinewidth=2, capthick=2,
label="Brightness profile")
# fitted smoothing spline to SBP
s_new = self.eval_spline(spline="brightness", x=self.r)
line1, = ax.plot(r, s_new, linestyle="dashed", linewidth=2,
label="SBP smoothing spline")
#
r_min = 1.0
r_max = max(r + r_err)
s_min = min(self.s) / 1.2
s_max = max(self.s + self.s_err) * 1.2
ax.set_xlim(r_min, r_max)
ax.set_ylim(s_min, s_max)
ax.set_xscale("log")
ax.set_yscale("log")
ax.set_xlabel("Radius (%s)" % r_unit)
ax.set_ylabel(r"Surface brightness (%s)" % s_unit)
# deprojected density profile
ax2 = ax.twinx()
mask = np.isfinite(density)
line2, = ax2.plot(r[mask], density[mask], color="black",
linestyle="solid", linewidth=2,
label="Density profile")
d_min = min(density[mask]) / 1.2
d_max = max(density[mask]) * 1.2
ax2.set_xlim(r_min, r_max)
ax2.set_ylim(d_min, d_max)
ax2.set_yscale(ax.get_yscale())
ax2.set_ylabel(r"%s (%s)" % (d_name, d_unit))
# legend
handles = [eb, line1, line2]
labels = [h.get_label() for h in handles]
ax.legend(handles=handles, labels=labels, loc=0)
fig.tight_layout()
return (fig, ax, ax2)
def main():
parser = argparse.ArgumentParser(
description="Deproject the surface brightness profile (SBP)")
parser.add_argument("config", nargs="?", default="sbpdeproj.conf",
help="config for SBP deprojection " +
"(default: sbpdeproj.conf)")
args = parser.parse_args()
config = ConfigObj(config_default.splitlines())
config_user = ConfigObj(open(args.config))
config.merge(config_user)
sbpfit_conf = ConfigObj(open(config["sbpfit_config"]))
try:
sbpfit_outfile = sbpfit_conf[sbpfit_conf["model"]]["outfile"]
except KeyError:
sbpfit_outfile = sbpfit_conf["outfile"]
sbpfit_results = json.load(open(sbpfit_outfile))
sbpdata = np.loadtxt(sbpfit_conf["sbpfile"])
rc = sbpfit_results["params"]["rc"][0]
bkg = sbpfit_results["params"]["bkg"][0]
redshift = config.as_float("redshift")
pixel = ChandraPixel(redshift)
print("SBP background subtraction and extrapolation ...")
sbp = SBP(sbpdata)
# ignorance radius
rignore = rc * config.as_float("sbpexp_rignore_ratio")
try:
rignore = config.as_float("sbpexp_rignore")
except KeyError:
pass
# cut radius where extrapolation stops (unit: kpc)
try:
rcut = config.as_float("sbpexp_rcut")
# convert unit "kpc" -> "pixel"
rcut /= pixel.get_length().to(au.kpc).value
except KeyError:
rcut = None
sbp.subtract_bkg(bkg=bkg)
sbp.extrapolate(rignore=rignore, rcut=rcut)
sbp.save(outfile=config["sbpexp_outfile"])
sbp.report(outfile=config["sbpexp_json"])
fig = Figure(figsize=(10, 8))
FigureCanvas(fig)
ax = fig.add_subplot(1, 1, 1)
sbp.plot(ax=ax, fig=fig)
fig.savefig(config["sbpexp_image"], dpi=150)
print("SBP deprojection -> density profile ...")
cf_data = np.loadtxt(config["coolfunc_profile"])
sbpdata_extrapolated = sbp.get_data()
brightness_profile = BrightnessProfile(sbp_data=sbpdata_extrapolated,
cf_data=cf_data,
z=redshift)
brightness_profile.convert_units()
brightness_profile.calc_electron_density()
brightness_profile.save(density_type="electron",
outfile=config["ne_profile"])
brightness_profile.calc_gas_density()
brightness_profile.save(density_type="gas",
outfile=config["rho_gas_profile"])
fig = Figure(figsize=(10, 8))
FigureCanvas(fig)
ax = fig.add_subplot(1, 1, 1)
brightness_profile.plot(ax=ax, fig=fig)
fig.savefig(config["density_profile_image"], dpi=150)
if __name__ == "__main__":
main()