-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmyLayer.hpp
305 lines (278 loc) · 8.93 KB
/
myLayer.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
#ifndef __MYLAYER_HPP__
#define __MYLAYER_HPP__
#include "myBlob.hpp"
#include <memory>
using std::vector;
using std::shared_ptr;
/*! layer parameters */
struct Param
{
Param() : conv_stride(0), conv_pad(0)
{}
/*! \brief conv param */
int conv_stride;
int conv_pad;
int conv_width;
int conv_height;
int conv_kernels;
inline void setConvParam(int stride, int pad, int width, int height, int kernels)
{
conv_stride = stride;
conv_pad = pad;
conv_width = width;
conv_height = height;
conv_kernels = kernels;
}
/*! \brief pool param */
int pool_stride;
int pool_width;
int pool_height;
inline void setPoolParam(int stride, int width, int height)
{
pool_stride = stride;
pool_width = width;
pool_height = height;
}
/*! \brief dropout param */
/*! if the most right bit is 1 use train mode, else use test mode;
* if the second bit from right is 1, use random seed; else use selected seed. */
int drop_mode;
double drop_p;
int drop_seed;
shared_ptr<Blob> drop_mask;
inline void setDropoutpParam(int mode, double pp, int s)
{
drop_mode = mode;
drop_p = pp;
drop_seed = s;
drop_mask.reset();
}
/*! fc parameters */
int fc_kernels;
};
/*!
* \brief Affine Layer
*/
class AffineLayer //全连接层
{
public:
AffineLayer() {}
~AffineLayer() {}
/*!
* \brief forward
* Blob bottom[0]: in[1]:weight
* _______ _______ __ _______________________ __ __ _______________________ __
* C /______/| N /______/| | |_______________________| __ | | |_______________________| __ |
* |------||| ······|------||| ===> | ... | | * | ... | | . T() + b
* H |------||| |------||| ===> | _______________________ > N | | _______________________ > F |
* |------|/ |------|/ |_ |_______________________| _| _| |_ |_______________________| _| _|
* W
* \___________ __________/ \___________ __________/ \___________ __________/
* \/ \/ \/
* [N,C,H,W] C*H*W C*H*N
*
* X: [N, C, Hx, Wx]
* weight: [F, C, Hw, Ww]
* bias: [F, 1, 1, 1]
* out: [N, F, 1, 1]
* \param[in] const vector<Blob*>& in in[0]:X, in[1]:weights, in[2]:bias
* \param[out] Blob& out Y
*/
static void forward(const vector<shared_ptr<Blob>>& in,
shared_ptr<Blob>& out);
/*!
* \brief backward
* in: [N, C, Hx, Wx]
* weight: [F, C, Hw, Ww]
* bias: [F, 1, 1, 1]
* dout: [N, F, 1, 1]
* \param[in] const Blob* dout dout
* \param[in] const vector<Blob*>& cache cache[0]:X, cache[1]:weights, cache[2]:bias
* \param[out] vector<Blob*>& grads grads[0]:dX, grads[1]:dW, grads[2]:db
*/
static void backward(shared_ptr<Blob>& dout,
const vector<shared_ptr<Blob>>& cache,
vector<shared_ptr<Blob>>& grads);
};
/*!
* \brief Convolutional Layer
*/
class ConvLayer { //卷积层
public:
ConvLayer() {}
~ConvLayer() {}
/*!
* \brief forward
* Blob bottom[0]:
* _______ _______ _______ _______
* C /______/| N /______/| C /______/| N*F /______/|
* |------||| ······|------||| |------||| ······|------|||
* H |------||| |------||| * F个kernel size为(n,n)的卷积核 = Hw |------||| |------||| Hw
* |------|/ |------|/ |------|/ |------|/
* W Ww Ww
* \___________ __________/
* \/
* [N,C,H,W]
*
* X: [N, C, Hx, Wx]
* weight: [F, C, Hw, Ww]
* bias: [F, 1, 1, 1]
* out: [N, F, (Hx+pad*2-Hw)/stride+1, (Wx+pad*2-Ww)/stride+1]
* \param[in] const vector<Blob*>& in in[0]:X, in[1]:weights, in[2]:bias
* \param[in] const ConvParam* param conv params
* \param[out] Blob& out Y
*/
static void forward(const vector<shared_ptr<Blob>>& in,
shared_ptr<Blob>& out,
Param& param);
/*!
* \brief backward
* in: [N, C, Hx, Wx]
* weight: [F, C, Hw, Ww]
* bias: [F, 1, 1, 1]
* dout: [N, F, (Hx+pad*2-Hw)/stride+1, (Wx+pad*2-Ww)/stride+1]
* \param[in] const Blob* dout dout
* \param[in] const vector<Blob*>& cache cache[0]:X, cache[1]:weights, cache[2]:bias
* \param[out] vector<Blob*>& grads grads[0]:dX, grads[1]:dW, grads[2]:db
*/
static void backward(shared_ptr<Blob>& dout,
const vector<shared_ptr<Blob>>& cache,
vector<shared_ptr<Blob>>& grads,
Param& param);
};
/*!
* \brief Max Pooling Layer
*/
class PoolLayer //池化层
{
public:
PoolLayer() {}
~PoolLayer() {}
/*!
* \brief forward
* X: [N, C, Hx, Wx]
* out: [N, C, Hx/2, Wx/2]
* \param[in] const vector<Blob*>& in in[0]:X
* \param[in] const Param* param conv params
* \param[out] Blob& out Y
*/
static void forward(const vector<shared_ptr<Blob>>& in,
shared_ptr<Blob>& out,
Param& param);
/*!
* \brief backward
* in: [N, C, Hx, Wx]
* dout: [N, F, Hx/2, Wx/2]
* \param[in] const Blob* dout dout
* \param[in] const vector<Blob*>& cache cache[0]:X
* \param[out] vector<Blob*>& grads grads[0]:dX
*/
static void backward(shared_ptr<Blob>& dout,
const vector<shared_ptr<Blob>>& cache,
vector<shared_ptr<Blob>>& grads,
Param& param);
};
/*!
* \brief ReLU Layer
*/
class ReluLayer //ReLU激活函数层
{
public:
ReluLayer() {}
~ReluLayer() {}
/*!
* \brief forward, out = max(0, X)
* X: [N, C, Hx, Wx]
* out: [N, C, Hx, Wx]
* \param[in] const vector<Blob*>& in in[0]:X
* \param[out] Blob& out Y
*/
static void forward(const vector<shared_ptr<Blob>>& in,
shared_ptr<Blob>& out);
/*!
* \brief backward, dX = dout .* (X > 0)
* in: [N, C, Hx, Wx]
* dout: [N, F, Hx, Wx]
* \param[in] const Blob* dout dout
* \param[in] const vector<Blob*>& cache cache[0]:X
* \param[out] vector<Blob*>& grads grads[0]:dX
*/
static void backward(shared_ptr<Blob>& dout,
const vector<shared_ptr<Blob>>& cache,
vector<shared_ptr<Blob>>& grads);
};
/*!
* \brief Dropout Layer
*/
class DropoutLayer //Dropout 层
{
public:
DropoutLayer() {}
~DropoutLayer() {}
/*!
* \brief forward
* X: [N, C, Hx, Wx]
* out: [N, C, Hx, Wx]
* \param[in] const vector<Blob*>& in in[0]:X
* \param[out] Blob& out Y
*/
static void forward(const vector<shared_ptr<Blob>>& in,
shared_ptr<Blob>& out,
Param& param);
/*!
* \brief backward
* in: [N, C, Hx, Wx]
* dout: [N, F, Hx, Wx]
* \param[in] const Blob* dout dout
* \param[in] const vector<Blob*>& cache cache[0]:X
* \param[out] vector<Blob*>& grads grads[0]:dX
*/
static void backward(shared_ptr<Blob>& dout,
const vector<shared_ptr<Blob>>& cache,
vector<shared_ptr<Blob>>& grads,
Param& param);
};
/*!
* \brief Softmax Loss Layer
*/
class SoftmaxLossLayer //损失函数层
{
public:
SoftmaxLossLayer() {}
~SoftmaxLossLayer() {}
/*!
* \brief forward
* X: [N, C, 1, 1], usually the output of affine(fc) layer
* Y: [N, C, 1, 1], ground truth, with 1(true) or 0(false)
* \param[in] const vector<Blob*>& in in[0]:X, in[1]:Y
* \param[out] double& loss loss
* \param[out] Blob** out out: dX
* \param[in] int mode 1: only forward, 0:forward and backward
*/
static void go(const vector<shared_ptr<Blob>>& in,
double& loss,
shared_ptr<Blob>& dout,
int mode = 0);
};
/*!
* \brief SVM Loss Layer
*/
class SVMLossLayer {
public:
SVMLossLayer() {}
~SVMLossLayer() {}
/*!
* \brief forward
* X: [N, C, 1, 1], usually the output of affine(fc) layer
* Y: [N, C, 1, 1], ground truth, with 1(true) or 0(false)
* \param[in] const vector<Blob*>& in in[0]:X, in[1]:Y
* \param[out] double& loss loss
* \param[out] Blob** out out: dX
* \param[in] int mode 1: only forward, 0:forward and backward
*/
static void go(const vector<shared_ptr<Blob>>& in,
double& loss,
shared_ptr<Blob>& dout,
int mode = 0);
};
#endif //__MYLAYER_HPP__