-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy pathpolish.py
166 lines (142 loc) · 5.02 KB
/
polish.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import torch
from torch import nn
import torch.nn.functional as F
import random
import numpy as np
import copy
import time
from biglm import BIGLM
from data import Vocab, DataLoader, s2t, s2xy_polish
gpu = 0
def init_model(m_path, device, vocab):
ckpt= torch.load(m_path, map_location='cpu')
lm_args = ckpt['args']
lm_vocab = Vocab(vocab, min_occur_cnt=lm_args.min_occur_cnt, specials=[])
lm_model = BIGLM(device, lm_vocab, lm_args.embed_dim, lm_args.ff_embed_dim, lm_args.num_heads, lm_args.dropout, lm_args.layers, 0.1)
lm_model.load_state_dict(ckpt['model'])
lm_model = lm_model.cuda(device)
lm_model.eval()
return lm_model, lm_vocab, lm_args
m_path = "./model/songci.ckpt"
lm_model, lm_vocab, lm_args = init_model(m_path, gpu, "./model/vocab.txt")
MAX_LEN = 300
k = 32
def top_k_inc(enc, src_padding_mask, inp_ys_tpl, inp_ys_seg, inp_ys_pos, s):
start = time.time()
incremental_state = None
inp_y, m = s2t(s, lm_vocab)
inp_y = inp_y.cuda(gpu)
res = []
for l in range(inp_ys_tpl.size(0)):
probs, pred, incremental_state = lm_model.work_incremental(enc, src_padding_mask, \
inp_y, inp_ys_tpl[0:l+1,:], inp_ys_seg[0:l+1,:], inp_ys_pos[0:l+1,:],\
incremental_state)
next_tk = []
for i in range(len(s)):
ctk = lm_vocab.idx2token(inp_ys_tpl[l,i].item())
if ctk != "<c1>" and ctk != "<c2>" and ctk != "<c0>":
next_tk.append(ctk)
continue
if l == 0:
logits = probs[len(s[i]) - 1, i]
else:
logits = probs[0, i]
ps, idx = torch.topk(logits, k=k)
ps = ps / torch.sum(ps)
sampled = torch.multinomial(ps, num_samples = 1)
sampled_idx = idx[sampled]
next_tk.append(lm_vocab.idx2token(sampled_idx.item()))
s_ = []
bidx = [1] * len(s)
for idx, (sent, t) in enumerate(zip(s, next_tk)):
if t == "<eos>":
res.append(sent)
bidx[idx] = 0
else:
s_.append(sent + [t])
if not s_:
break
s = s_
inp_y, m = s2t(s, lm_vocab)
inp_y = inp_y.cuda(gpu)
bidx = torch.BoolTensor(bidx).cuda(gpu)
incremental_state["bidx"] = bidx
res += s_
#for i in res:
# print(''.join(i))
print(time.time()-start)
return res
def top_k(enc, src_padding_mask, inp_ys_tpl, inp_ys_seg, inp_ys_pos, s):
inp_y, m = s2t(s, lm_vocab)
inp_y = inp_y.cuda(gpu)
start = time.time()
res = []
for l in range(inp_ys_tpl.size(0)):
probs, pred = lm_model.work(enc, src_padding_mask, inp_y, inp_ys_tpl[0:l+1,:], inp_ys_seg[0:l+1,:], inp_ys_pos[0:l+1,:])
next_tk = []
for i in range(len(s)):
ctk = lm_vocab.idx2token(inp_ys_tpl[l,i].item())
if ctk != "<c1>" and ctk != "<c2>" and ctk != "<c0>":
next_tk.append(ctk)
continue
logits = probs[len(s[i]) - 1, i]
ps, idx = torch.topk(logits, k=k)
ps = ps / torch.sum(ps)
sampled = torch.multinomial(ps, num_samples = 1)
sampled_idx = idx[sampled]
next_tk.append(lm_vocab.idx2token(sampled_idx.item()))
s_ = []
for sent, t in zip(s, next_tk):
if t == "<eos>":
res.append(sent)
else:
s_.append(sent + [t])
if not s_:
break
s = s_
inp_y, m = s2t(s, lm_vocab)
inp_y = inp_y.cuda(gpu)
res += s_
#for i in res:
# print(''.join(i))
#print(time.time()-start)
return res
ds = []
with open("./data/polish_tpl.txt", "r") as f:
for line in f:
line = line.strip()
if line:
ds.append(line)
print(len(ds))
local_rank = gpu
batch_size = 1
cp_size = 1
batches = round(len(ds) / batch_size)
for i in range(5):
fo = open("./results/out"+str(i+1)+".txt", "w")
idx = 0
while idx < len(ds):
lb = ds[idx:idx + batch_size]
cplb = []
for line in lb:
cplb += [line for i in range(cp_size)]
print(cplb)
xs_tpl, xs_seg, xs_pos, \
ys_truth, ys_inp, \
ys_tpl, ys_seg, ys_pos, msk = s2xy_polish(cplb, lm_vocab, lm_args.max_len,2)
xs_tpl = xs_tpl.cuda(local_rank)
xs_seg = xs_seg.cuda(local_rank)
xs_pos = xs_pos.cuda(local_rank)
ys_tpl = ys_tpl.cuda(local_rank)
ys_seg = ys_seg.cuda(local_rank)
ys_pos = ys_pos.cuda(local_rank)
enc, src_padding_mask = lm_model.encode(xs_tpl, xs_seg, xs_pos)
s = [['<bos>']] * batch_size * cp_size
res = top_k_inc(enc, src_padding_mask, ys_tpl, ys_seg, ys_pos, s)
for i, line in enumerate(cplb):
r = ''.join(res[i])
print(line)
print(r)
fo.write(line + "\t" + r + "\n")
idx += batch_size
fo.close()