-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathutils.py
154 lines (125 loc) · 5.59 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import os
import numpy as onp
import matplotlib.pyplot as plt
import tensorflow_datasets as tfds
def format_plot(title='', x='', y='', grid=True):
ax = plt.gca()
plt.grid(grid)
if title:
plt.title(title, fontsize=26)
plt.xlabel(x, fontsize=22)
plt.ylabel(y, fontsize=22)
def finalize_plot(shape=(1, 1)):
plt.gcf().set_size_inches(
shape[0] * 1.5 * plt.gcf().get_size_inches()[1],
shape[1] * 1.5 * plt.gcf().get_size_inches()[1])
plt.tight_layout()
def plot_images(image, shape=None, num_row=2, num_col=5, scale=1, row_title=None, fname=None, save=False):
# plot images
if shape is not None:
image = onp.reshape(image, shape)
fig, axes = plt.subplots(num_row, num_col, figsize=(1.5*scale*num_col,2*scale*num_row))
for i in range(num_row*num_col):
if num_row == 1:
ax = axes[i%num_col]
else:
ax = axes[i//num_col, i%num_col]
if len(image.shape) == 3:
ax.imshow(image[i], cmap='gray', vmin=0, vmax=1)
elif len(image.shape) == 4:
ax.imshow(image[i], vmin=0, vmax=1)
ax.axis('off')
plt.tight_layout()
if save:
plt.savefig(fname=fname+'.pdf', format="pdf", bbox_inches='tight')
plt.show()
def plot_visualization(image, shape=None, num_row=3, num_col=5, scale=1, row_title=None, fname=None, save=False):
# plot images
if shape is not None:
image = onp.reshape(image, shape)
fig, big_axes = plt.subplots(num_row, 1, figsize=(1.5*scale*num_col, 2*scale*num_row), sharey=True)
# Subplot rows
for i, big_ax in enumerate(big_axes):
big_ax.set_title(row_title[i], fontsize=16*scale, y=0.84)
# Turn off axis lines and ticks of the big subplot
# obs alpha is 0 in RGBA string!
big_ax.axis('off')
big_ax.tick_params(labelcolor=(1.,1.,1., 0.0), top='off', bottom='off', left='off', right='off')
# removes the white frame
big_ax._frameon = False
# Subplot columns
for i in range(num_row*num_col):
ax = fig.add_subplot(num_row, num_col, i+1)
if len(image.shape) == 3:
ax.imshow(image[i], cmap='gray', vmin=0, vmax=1)
elif len(image.shape) == 4:
ax.imshow(image[i], vmin=0, vmax=1)
ax.axis('off')
# fig.set_facecolor('w')
plt.tight_layout()
if save:
plt.savefig(fname=fname+'.pdf', format="pdf", bbox_inches='tight')
plt.show()
def normalize(x_train, y_train, x_test, y_test):
x_train = x_train / onp.sqrt(onp.reshape(onp.einsum('ij,ij->i', x_train, x_train), (64, 1))) * onp.sqrt(x_train.shape[-1])
y_train = y_train - onp.mean(y_train, axis=0, keepdims=True)
x_test = x_test / onp.sqrt(onp.reshape(onp.einsum('ij,ij->i', x_test, x_test), (32, 1))) * onp.sqrt(x_test.shape[-1])
return x_train, y_train, x_test, y_test
# Data Loading
def _partial_flatten_and_normalize(x):
"""Flatten all but the first dimension of an `np.ndarray`."""
x = onp.reshape(x, (x.shape[0], -1))
return (x - onp.mean(x)) / onp.std(x)
def _flatten(x):
"""Flatten all but the first dimension of an `np.ndarray`."""
return onp.reshape(x, (x.shape[0], -1))/255
def _normalize(x):
"""Flatten all but the first dimension of an `np.ndarray`."""
return x / 255
def _one_hot(x, k, dtype=onp.float32):
"""Create a one-hot encoding of x of size k."""
return onp.array(x[:, None] == onp.arange(k), dtype)
def get_dataset(name, n_train=None, n_test=None, permute_train=False, flatten=False, normalize=False):
"""Download, parse and process a dataset to unit scale and one-hot labels."""
ds_builder = tfds.builder(name)
ds_train, ds_test = tfds.as_numpy(
tfds.load(
name + ':3.*.*',
split=['train' + ('[:%d]' % n_train if n_train is not None else ''),
'test' + ('[:%d]' % n_test if n_test is not None else '')],
batch_size=-1,
as_dataset_kwargs={'shuffle_files': False}))
train_images, train_labels, test_images, test_labels = (ds_train['image'],
ds_train['label'],
ds_test['image'],
ds_test['label'])
num_classes = ds_builder.info.features['label'].num_classes
if flatten and normalize:
train_images = _partial_flatten_and_normalize(train_images)
test_images = _partial_flatten_and_normalize(test_images)
elif flatten:
train_images = _flatten(train_images)
test_images = _flatten(test_images)
else:
train_images = _normalize(train_images)
test_images = _normalize(test_images)
train_labels = _one_hot(train_labels, num_classes)
test_labels = _one_hot(test_labels, num_classes)
if permute_train:
perm = onp.random.RandomState(0).permutation(train_images.shape[0])
train_images = train_images[perm]
train_labels = train_labels[perm]
return train_images, train_labels, test_images, test_labels
def shaffle(images, labels, seed=None):
perm = onp.random.RandomState(seed).permutation(images.shape[0])
images = images[perm]
labels = labels[perm]
return images, labels
def accuracy(y_pred, y_test):
"""
This function calculates the accuracy of mean prediction of Gaussian Process
:param y_pred: np.ndarray. Prediction of Gaussian Process.
:param y_test: np.ndarray. Ground truth label.
:return: a float for accuracy.
"""
return onp.mean(onp.argmax(y_pred, axis=-1) == onp.argmax(y_test, axis=-1))