-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmodel.py
630 lines (526 loc) · 23.5 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
from torch import nn, optim, autograd
import pdb
import torch
from torchvision import datasets
class ENV_EBD(nn.Module):
def __init__(self, flags):
super(ENV_EBD, self).__init__()
self.embedings = torch.nn.Embedding(flags.envs_num, 4)
self.re_init()
def re_init(self):
pass
# self.embedings.weight.data.fill_(1.)
def forward(self, e):
return self.embedings(e.long())
class EBD(nn.Module):
def __init__(self, flags):
super(EBD, self).__init__()
self.flags = flags
# if self.flags.num_classes == 2:
self.embedings = torch.nn.Embedding(flags.envs_num, 1)
# else:
# self.embedings = torch.nn.Embedding(flags.envs_num, self.flags.num_classes)
self.re_init()
def re_init(self):
self.embedings.weight.data.fill_(1.)
def re_init_with_noise(self, noise_sd):
# if self.flags.num_classes == 2:
rd = torch.normal(
torch.Tensor([1.0] * self.flags.envs_num),
torch.Tensor([noise_sd] * self.flags.envs_num))
self.embedings.weight.data = rd.view(-1, 1).cuda()
# else:
# rd = torch.normal(
# torch.Tensor([1.0] * self.flags.envs_num * self.flags.num_classes),
# torch.Tensor([noise_sd] * self.flags.envs_num* self.flags.num_classes))
# self.embedings.weight.data = rd.view(-1, self.flags.num_classes).cuda()
def forward(self, e):
return self.embedings(e.long())
class Y_EBD(nn.Module):
def __init__(self, flags):
super(Y_EBD, self).__init__()
self.embedings = torch.nn.Embedding(flags.classes_num, 4)
self.re_init()
def re_init(self):
pass
# self.embedings.weight.data.fill_(1.)
def forward(self, e):
return self.embedings(e.long())
class BayesW(nn.Module):
def __init__(self, prior, flags, update_w=True):
super(BayesW, self).__init__()
self.pw, self.psigma = prior
self.flags = flags
self.vw = torch.nn.Parameter(self.pw.clone(), requires_grad=update_w)
self.vsigma= torch.nn.Parameter(self.psigma.clone())
self.nll = nn.MSELoss()
self.re_init()
def reset_prior(self, prior):
self.pw, self.psigma = prior
print("resetting prior", self.pw.item(), self.psigma.item())
def reset_posterior(self, prior):
new_w, new_sigma = prior
self.vw.data, self.vsigma.data = new_w.clone(), new_sigma.clone()
print("resetting posterior", self.pw.item(), self.psigma.item())
def generate_rand(self, N):
self.epsilon = list()
for i in range(N):
self.epsilon.append(
torch.normal(
torch.tensor(0.0),
torch.tensor(1.0)))
def variational_loss(self, xb, yb, N):
pw, psigma = self.pw, self.psigma
vw, vsigma = self.vw, self.vsigma
kl = torch.log(psigma/vsigma) + (vsigma ** 2 + (vw - pw) ** 2) / (2 * psigma ** 2)
lk_loss = 0
assert N == len(self.epsilon)
for i in range(N):
epsilon_i = self.epsilon[i]
wt_ei = vw + vsigma * epsilon_i
loss_i = self.nll(wt_ei * xb, yb)
lk_loss += 1./N * loss_i
return lk_loss + 1./self.flags.data_num * kl
def forward(self, x):
return self.vw * x
def re_init(self):
pass
def init_sep_by_share(self, share_bayes_net):
self.vw.data = share_bayes_net.vw.data.clone()
self.vsigma.data = share_bayes_net.vsigma.data.clone()
self.epsilon = share_bayes_net.epsilon
class MLP(nn.Module):
def __init__(self, flags):
super(MLP, self).__init__()
self.flags = flags
if flags.grayscale_model:
lin1 = nn.Linear(14 * 14, flags.hidden_dim)
else:
lin1 = nn.Linear(2 * 14 * 14, flags.hidden_dim)
lin2 = nn.Linear(flags.hidden_dim, flags.hidden_dim)
lin3 = nn.Linear(flags.hidden_dim, 1)
for lin in [lin1, lin2, lin3]:
nn.init.xavier_uniform_(lin.weight)
nn.init.zeros_(lin.bias)
self._main = nn.Sequential(lin1, nn.ReLU(True), lin2, nn.ReLU(True), lin3)
def forward(self, input):
if self.flags.grayscale_model:
out = input.view(input.shape[0], 2, 14 * 14).sum(dim=1)
else:
out = input.view(input.shape[0], 2 * 14 * 14)
out = self._main(out)
return out
class MLPFull(nn.Module):
def __init__(self, flags):
super(MLPFull, self).__init__()
self.flags = flags
if flags.grayscale_model:
lin1 = nn.Linear(14 * 14, flags.hidden_dim)
else:
lin1 = nn.Linear(3 * 14 * 14, flags.hidden_dim)
lin2 = nn.Linear(flags.hidden_dim, flags.hidden_dim)
lin3 = nn.Linear(flags.hidden_dim, flags.num_classes)
for lin in [lin1, lin2, lin3]:
nn.init.xavier_uniform_(lin.weight)
nn.init.zeros_(lin.bias)
self._main = nn.Sequential(lin1, nn.ReLU(True), lin2, nn.ReLU(True), lin3)
def forward(self, input):
if self.flags.grayscale_model:
out = input.view(input.shape[0], 3, 14 * 14).sum(dim=1)
else:
out = input.view(input.shape[0], 3 * 14 * 14)
out = self._main(out)
return out
class PredEnvHatY(nn.Module):
def __init__(self, flags):
super(PredEnvHatY, self).__init__()
self.lin1 = nn.Linear(1, flags.hidden_dim)
self.lin2 = nn.Linear(flags.hidden_dim, 1)
for lin in [self.lin1, self.lin2]:
nn.init.xavier_uniform_(lin.weight)
nn.init.zeros_(lin.bias)
self._main = nn.Sequential(
self.lin1, nn.ReLU(True), self.lin2)
def forward(self, input):
out = self._main(input)
return out
class InferEnv(nn.Module):
def __init__(self, flags):
super(InferEnv, self).__init__()
self.lin1 = nn.Linear(1, flags.hidden_dim)
self.lin2 = nn.Linear(flags.hidden_dim, 1)
for lin in [self.lin1, self.lin2]:
nn.init.xavier_uniform_(lin.weight)
nn.init.zeros_(lin.bias)
self._main = nn.Sequential(
self.lin1, nn.ReLU(True), self.lin2, nn.Sigmoid())
def forward(self, input):
out = self._main(input)
return out
class PredEnvYY(nn.Module):
def __init__(self, flags):
super(PredEnvYY, self).__init__()
lin1 = nn.Linear(5, flags.hidden_dim)
lin2 = nn.Linear(flags.hidden_dim, 1)
for lin in [lin1, lin2]:
nn.init.xavier_uniform_(lin.weight)
nn.init.zeros_(lin.bias)
self._main = nn.Sequential(
lin1, nn.ReLU(True), lin2)
def forward(self, input):
out = self._main(input)
return out
class PredEnvHatYSep(nn.Module):
def __init__(self, flags):
super(PredEnvHatYSep, self).__init__()
self.lin1_1 = nn.Linear(1, flags.hidden_dim)
self.lin1_2 = nn.Linear(flags.hidden_dim, 1)
self.lin2_1 = nn.Linear(1, flags.hidden_dim)
self.lin2_2 = nn.Linear(flags.hidden_dim, 1)
for lin in [self.lin1_1, self.lin1_2, self.lin2_1, self.lin2_2]:
nn.init.xavier_uniform_(lin.weight)
nn.init.zeros_(lin.bias)
self._main1 = nn.Sequential(
self. lin1_1, nn.ReLU(True), self.lin1_2)
self._main2 = nn.Sequential(
self.lin2_1, nn.ReLU(True), self.lin2_2)
def init_sep_by_share(self, share_net):
self.lin1_1.weight.data = share_net.lin1.weight.data.clone()
self.lin1_2.weight.data = share_net.lin2.weight.data.clone()
self.lin1_1.bias.data = share_net.lin1.bias.data.clone()
self.lin1_2.bias.data = share_net.lin2.bias.data.clone()
self.lin2_1.weight.data = share_net.lin1.weight.data.clone()
self.lin2_2.weight.data = share_net.lin2.weight.data.clone()
self.lin2_1.bias.data = share_net.lin1.bias.data.clone()
self.lin2_2.bias.data = share_net.lin2.bias.data.clone()
def forward(self, g, input):
output = torch.zeros_like(g).cuda()
output[g == 0]= self._main1(
input[g == 0].view(-1, 1)).view(-1)
output[g == 1]= self._main2(
input[g == 1].view(-1, 1)).view(-1)
return output
class PredYEnvHatY(nn.Module):
def __init__(self, flags):
super(PredYEnvHatY, self).__init__()
lin1 = nn.Linear(5, flags.hidden_dim)
lin2 = nn.Linear(flags.hidden_dim, 1)
for lin in [lin1, lin2]:
nn.init.xavier_uniform_(lin.weight)
nn.init.zeros_(lin.bias)
self._main = nn.Sequential(
lin1, nn.ReLU(True), lin2)
def forward(self, input):
out = self._main(input)
return out
__all__ = [ 'resnet18', 'resnet34', 'resnet50', 'resnet101',
'resnet152', 'resnext50_32x4d', 'resnext101_32x8d',
'wide_resnet50_2', 'wide_resnet101_2']
model_urls = {
'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
'resnext50_32x4d': 'https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth',
'resnext101_32x8d': 'https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth',
'wide_resnet50_2': 'https://download.pytorch.org/models/wide_resnet50_2-95faca4d.pth',
'wide_resnet101_2': 'https://download.pytorch.org/models/wide_resnet101_2-32ee1156.pth',
}
def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=dilation, groups=groups, bias=False, dilation=dilation)
def conv1x1(in_planes, out_planes, stride=1):
"""1x1 convolution"""
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
base_width=64, dilation=1, norm_layer=None):
super(BasicBlock, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
if groups != 1 or base_width != 64:
raise ValueError('BasicBlock only supports groups=1 and base_width=64')
if dilation > 1:
raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
# Both self.conv1 and self.downsample layers downsample the input when stride != 1
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = norm_layer(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = norm_layer(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class Bottleneck(nn.Module):
# Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2)
# while original implementation places the stride at the first 1x1 convolution(self.conv1)
# according to "Deep residual learning for image recognition"https://arxiv.org/abs/1512.03385.
# This variant is also known as ResNet V1.5 and improves accuracy according to
# https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch.
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
base_width=64, dilation=1, norm_layer=None):
super(Bottleneck, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
width = int(planes * (base_width / 64.)) * groups
# Both self.conv2 and self.downsample layers downsample the input when stride != 1
self.conv1 = conv1x1(inplanes, width)
self.bn1 = norm_layer(width)
self.conv2 = conv3x3(width, width, stride, groups, dilation)
self.bn2 = norm_layer(width)
self.conv3 = conv1x1(width, planes * self.expansion)
self.bn3 = norm_layer(planes * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, block, layers, num_classes=1000, zero_init_residual=False,
groups=1, width_per_group=64, replace_stride_with_dilation=None,
norm_layer=None):
super(ResNet, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
self._norm_layer = norm_layer
self.inplanes = 64
self.dilation = 1
if replace_stride_with_dilation is None:
# each element in the tuple indicates if we should replace
# the 2x2 stride with a dilated convolution instead
replace_stride_with_dilation = [False, False, False]
if len(replace_stride_with_dilation) != 3:
raise ValueError("replace_stride_with_dilation should be None "
"or a 3-element tuple, got {}".format(replace_stride_with_dilation))
self.groups = groups
self.base_width = width_per_group
self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3,
bias=False)
self.bn1 = norm_layer(self.inplanes)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2,
dilate=replace_stride_with_dilation[0])
self.layer3 = self._make_layer(block, 256, layers[2], stride=2,
dilate=replace_stride_with_dilation[1])
self.layer4 = self._make_layer(block, 512, layers[3], stride=2,
dilate=replace_stride_with_dilation[2])
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
num_classes = 1
self.num_classes = 1
self.class_classifier = nn.Linear(512 * block.expansion, num_classes)
self.sep=False
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
if zero_init_residual:
for m in self.modules():
if isinstance(m, Bottleneck):
nn.init.constant_(m.bn3.weight, 0)
elif isinstance(m, BasicBlock):
nn.init.constant_(m.bn2.weight, 0)
def _make_layer(self, block, planes, blocks, stride=1, dilate=False):
norm_layer = self._norm_layer
downsample = None
previous_dilation = self.dilation
if dilate:
self.dilation *= stride
stride = 1
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
conv1x1(self.inplanes, planes * block.expansion, stride),
norm_layer(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample, self.groups,
self.base_width, previous_dilation, norm_layer))
self.inplanes = planes * block.expansion
for _ in range(1, blocks):
layers.append(block(self.inplanes, planes, groups=self.groups,
base_width=self.base_width, dilation=self.dilation,
norm_layer=norm_layer))
return nn.Sequential(*layers)
def encoder(self, x):
# See note [TorchScript super()]
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = torch.flatten(x, 1)
return x
def forward(self, x):
x = self.encoder(x)
self.fp = x
return self.class_classifier(x)
def sep_param_id(self):
sep_params = [
p[1] for p
in self.named_parameters()
if 'classifier' in p[0] and
'sep' in p[0]]
sep_param_id = [id(i) for i in sep_params]
return sep_param_id
def rep_param_id(self):
rep_param_id = [
id(p) for p in self.parameters()
if id(p) not in self.sep_param_id()
and id(p) not in self.share_param_id()]
return rep_param_id
def get_optimizer_schedule(self, args):
if args.irm_penalty_weight > 0:
if args.opt == "Adam":
opt_fun = optim.Adam
optimizer_rep = opt_fun(
filter(lambda p:id(p) in self.rep_param_id(), self.parameters()),
lr=args.lr)
optimizer_share = opt_fun(
filter(lambda p:id(p) in self.share_param_id(), self.parameters()),
lr=args.lr* args.penalty_wlr)
optimizer_sep = optim.SGD(
filter(lambda p:id(p) in self.sep_param_id(), self.parameters()),
lr=args.lr* args.penalty_welr)
elif args.opt == "SGD":
opt_fun = optim.SGD
optimizer_rep = opt_fun(
filter(lambda p:id(p) in self.rep_param_id(), self.parameters()),
momentum=0.9,
lr=args.lr)
optimizer_share = opt_fun(
filter(lambda p:id(p) in self.share_param_id(), self.parameters()),
momentum=args.w_momentum,
lr=args.lr * args.penalty_wlr)
optimizer_sep = opt_fun(
filter(lambda p:id(p) in self.sep_param_id(), self.parameters()),
momentum=args.w_momentum,
lr=args.lr * args.penalty_welr)
else:
raise Exception
if args.lr_schedule_type == "step":
print("step_gamma=%s" % args.step_gamma)
scheduler_rep = lr_scheduler.StepLR(optimizer_rep, step_size=int(args.n_epochs/2.5), gamma=args.step_gamma)
scheduler_sep = lr_scheduler.StepLR(optimizer_sep, step_size=int(args.n_epochs), gamma=args.step_gamma)
scheduler_share = lr_scheduler.StepLR(optimizer_share, step_size=int(args.n_epochs/2.5), gamma=args.step_gamma)
return [optimizer_rep, optimizer_share, optimizer_sep], [scheduler_rep, scheduler_share, scheduler_sep]
else:
if args.opt == "Adam":
opt_fun = optim.Adam
optimizer= opt_fun(
filter(lambda p:id(p) in self.rep_param_id(), self.parameters()),
lr=args.lr)
elif args.opt == "SGD":
opt_fun = optim.SGD
optimizer= opt_fun(
filter(lambda p:id(p) in self.rep_param_id(), self.parameters()),
momentum=0.9,
lr=args.lr)
else:
raise Exception
scheduler= lr_scheduler.StepLR(
optimizer,
step_size=int(args.n_epochs/3.),
gamma=args.step_gamma)
return [optimizer], [scheduler]
class ResNetUS(ResNet):
def __init__(self, block, layers, num_classes=10, zero_init_residual=False,
groups=1, width_per_group=64, replace_stride_with_dilation=None,
norm_layer=None):
nn.Module.__init__(self)
if norm_layer is None:
norm_layer = nn.BatchNorm2d
self._norm_layer = norm_layer
self.inplanes = 64
self.dilation = 1
if replace_stride_with_dilation is None:
# each element in the tuple indicates if we should replace
# the 2x2 stride with a dilated convolution instead
replace_stride_with_dilation = [False, False, False]
if len(replace_stride_with_dilation) != 3:
raise ValueError("replace_stride_with_dilation should be None "
"or a 3-element tuple, got {}".format(replace_stride_with_dilation))
self.groups = groups
self.base_width = width_per_group
## CIFAR10: kernel_size 7 -> 3, stride 2 -> 1, padding 3->1
self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=3, stride=1, padding=1, bias=False)
## END
self.bn1 = norm_layer(self.inplanes)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2,
dilate=replace_stride_with_dilation[0])
self.layer3 = self._make_layer(block, 256, layers[2], stride=2,
dilate=replace_stride_with_dilation[1])
self.layer4 = self._make_layer(block, 512, layers[3], stride=2,
dilate=replace_stride_with_dilation[2])
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
# num_classes = 1
self.num_classes = num_classes
# self.fc = nn.Linear(512 * block.expansion, num_classes)
self.class_classifier = nn.Linear(512 * block.expansion, num_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
if zero_init_residual:
for m in self.modules():
if isinstance(m, Bottleneck):
nn.init.constant_(m.bn3.weight, 0)
elif isinstance(m, BasicBlock):
nn.init.constant_(m.bn2.weight, 0)
def _resnet_sepfc_us(arch, block, layers, pretrained, progress, **kwargs):
model = ResNetUS(block, layers, **kwargs)
if pretrained:
state_dict = load_state_dict_from_url(model_urls[arch],progress=progress)
model_dict = model.state_dict()
state_dict['conv1.weight'] = model_dict['conv1.weight']
pretrained_state_dict = {k: v for k, v in state_dict.items() if k in model_dict}
model_dict.update(pretrained_state_dict)
model.load_state_dict(model_dict)
return model
def resnet18_sepfc_us(pretrained=False, progress=True, **kwargs):
return _resnet_sepfc_us('resnet18', BasicBlock, [2, 2, 2, 2], pretrained, progress,
**kwargs)
def resnet50_sepfc_us(pretrained=False, progress=True, **kwargs):
return _resnet_sepfc_us(
'resnet50', Bottleneck,
[3, 4, 6, 3], pretrained, progress,
**kwargs)