-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenetic_algorithm_multiprocess.py
439 lines (373 loc) · 16 KB
/
genetic_algorithm_multiprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
import argparse
import gc
import logging
import torch.multiprocessing as multiprocessing
import os
import pickle
import random
import sys
from collections import deque
from torch.multiprocessing import Pool
multiprocessing.set_start_method("spawn", force=True)
from pathlib import Path
import nmslib
import numpy as np
import pandas as pd
import torch
import yaml
from rdkit import RDLogger
from scipy import sparse
from tdc import Oracle
from tqdm import tqdm
package_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
sys.path.append(package_dir)
from data_scripts.utils import seed_everything, smi_to_bit_fp
from decode_trees import decode_synth_tree, load_models
# silence annoying RDKit logging
lg = RDLogger.logger()
lg.setLevel(RDLogger.CRITICAL)
# silence annoying nmslib logging
# logging.getLogger("nmslib").setLevel(logging.CRITICAL)
def crossover(parents, num_offsprings=512, mean=2048, std=410):
num_parents, fp_size = parents.shape
# for each offspring, randomly sample no. of bits to inherit from parent_a vs parent_b from N(2048, 410)
num_bits_a = np.random.normal(mean, std, num_offsprings).astype(int)
# for each offspring, randomly sample which bits come from parent_a vs parent_b
bit_idxs = np.array([np.random.permutation(fp_size) for _ in range(num_offsprings)])
# for each offspring, randomly sample which 2 parents to inherit from
parent_idxs = np.random.choice(num_parents, size=num_offsprings * 2, replace=True)
parent_idxs = parent_idxs.reshape(num_offsprings, 2)
offsprings = []
for i in range(num_offsprings):
# initialise offspring vector of zeros
offspring = np.zeros(fp_size, dtype="int32")
# indices to inherit from parent_a vs parent_b
bit_idxs_from_a = bit_idxs[i, : num_bits_a[i]]
bit_idxs_from_b = bit_idxs[i, num_bits_a[i] :]
# inherit accordingly
offspring[bit_idxs_from_a] = parents[parent_idxs[i, 0], bit_idxs_from_a]
offspring[bit_idxs_from_b] = parents[parent_idxs[i, 1], bit_idxs_from_b]
offsprings.append(offspring)
return np.array(offsprings)
def mutate(offsprings, num_bits=24, p=0.5):
num_offsprings, fp_size = offsprings.shape
offsprings_out = []
for i in range(num_offsprings):
offspring = offsprings[i]
if random.random() < p:
# do mutate
# sample bit idxs to mutate
mutate_idxs = np.random.choice(fp_size, size=num_bits, replace=False)
# # flip the chosen bits from 0 to 1 and 1 to 0
offspring[mutate_idxs] = 1 - offspring[mutate_idxs]
offsprings_out.append(offspring)
return np.array(offsprings_out)
def get_oracle(property):
# we can also define custom oracles with complex combinations of different scores
# they just need to have __call__(self, smi) method
if property == "GSK3B":
# Glycogen synthase kinase 3 beta, also known as GSK3β, is an enzyme that in humans is encoded by the GSK3β gene
# Abnormal regulation and expression of GSK3β is associated with an increased susceptibility towards bipolar disorder
# The oracle is a random forest classifer using ECFP6 fingerprints using ExCAPE-DB dataset.
oracle = Oracle(name="GSK3B")
elif property == "JNK3":
# DRD2 stands for dopamine type 2 receptor
# The oracle is constructed by Olivercrona et al., using a support vector machine classifier
# with a Gaussian kernel with ECFP6 fingerprint on ExCAPE-DB dataset.
oracle = Oracle(name="JNK3")
elif property == "SA":
# how hard or how easy it is to synthesize a given molecule,
# based on a combination of the molecule’s fragments contributions.
# The oracle is caluated via RDKit, using a set of chemical rules defined by Ertl et al.
oracle = Oracle(name="SA")
else:
raise ValueError(f"unrecognized property to optimize: {property}")
return oracle
parser = argparse.ArgumentParser()
# inputs
parser.add_argument(
"--path_csv_matched_rcts", type=Path, default="data/matched_building_blocks.csv"
)
parser.add_argument("--path_templates", type=Path, default="data/templates_cleaned.txt")
parser.add_argument(
"--path_rct_to_temps", type=Path, default="data/rct_to_temps_cleaned.pickle"
)
parser.add_argument(
"--path_temp_to_rcts", type=Path, default="data/temp_to_rcts_cleaned.pickle"
)
parser.add_argument("--path_fps", type=Path, default="data/rct_fps.npz")
parser.add_argument("--path_index", type=Path, default="data/knn_rct_fps.index")
parser.add_argument("--path_model_config", type=Path, default="config/models.yaml")
parser.add_argument("--path_seed_smis", type=Path, default="data/ZINC_smi_seeds.txt")
parser.add_argument(
"--path_seed_trees", type=Path
) # default="data/checkpoints/genetic_algorithm/seed_trees.pickle"
# outputs
parser.add_argument(
"--path_save_ckpt_dir", type=Path, default="checkpoints/genetic_algorithm/"
)
# genetic algorithm parameters
parser.add_argument(
"--property",
type=str,
default="GSK3B",
help="oracle function to score generated molecules, ['GSK3B', 'JNK3', 'SA']",
)
parser.add_argument("--num_offsprings", type=int, default=512)
parser.add_argument("--num_parents", type=int, default=128)
parser.add_argument("--generations", type=int, default=200)
parser.add_argument("--early_stop_delta", type=float, default=0.01)
parser.add_argument("--early_stop_patience", type=int, default=10)
parser.add_argument("--cross_mean", type=int, default=2048)
parser.add_argument("--cross_std", type=int, default=410)
parser.add_argument("--mutate_bits", type=int, default=24)
parser.add_argument("--mutate_prob", type=float, default=0.5)
parser.add_argument("--save_every_gen", action="store_true")
# decoding parameters
parser.add_argument("--radius", type=int, default=2)
parser.add_argument("--fp_size", type=int, default=4096)
parser.add_argument("--max_steps", type=int, default=10)
# misc args
parser.add_argument("--ncpu", type=int, default=24)
parser.add_argument("--random_seed", type=int, default=1337)
args = parser.parse_args()
print(args)
(args.path_save_ckpt_dir).mkdir(parents=True, exist_ok=True)
seed_everything(args.random_seed)
########### LOAD ALL INPUTS ###########
# load valid building blocks
df_matched = pd.read_csv(args.path_csv_matched_rcts)
smis = df_matched.SMILES.tolist()
# load templates
with open(args.path_templates, "r") as f:
template_strs = [l.strip().split("|")[1] for l in f.readlines()]
# NOTE: this has limited utility, once we start making new molecules, this dict cannot be used
with open(args.path_rct_to_temps, "rb") as f:
rct_to_temps = pickle.load(f)
with open(args.path_temp_to_rcts, "rb") as f:
temp_to_rcts = pickle.load(f)
# load building block embeddings (fingerprints)
mol_fps = sparse.load_npz(args.path_fps)
mol_fps = mol_fps.toarray()
# load building block kNN search index
index_all_mols = nmslib.init(method="hnsw", space="cosinesimil")
index_all_mols.loadIndex(str(args.path_index), load_data=True)
with open(args.path_model_config, "r") as stream:
model_config = yaml.safe_load(stream)
# load 4 trained models from checkpoints
f_act, f_rt1, f_rt2, f_rxn = load_models(model_config)
f_act.share_memory()
f_rt1.share_memory()
f_rt2.share_memory()
f_rxn.share_memory()
print(f"finished loading 4 models from checkpoints")
def decode_smi_or_z(smi_or_z):
"""
as this function needs the 4 models loaded on GPU, ensure the models have been loaded globally
"""
if isinstance(smi_or_z, str):
tree = decode_synth_tree(
f_act=f_act,
f_rt1=f_rt1,
f_rt2=f_rt2,
f_rxn=f_rxn,
target_smi=smi_or_z,
target_z=None,
mol_fps=mol_fps,
smis=smis,
index_all_mols=index_all_mols,
template_strs=template_strs,
temp_to_rcts=temp_to_rcts,
rct_to_temps=rct_to_temps,
input_dim=model_config["input_fp_dim"],
radius=model_config["radius"],
t_max=args.max_steps,
)
else:
tree = decode_synth_tree(
f_act=f_act,
f_rt1=f_rt1,
f_rt2=f_rt2,
f_rxn=f_rxn,
target_smi=None,
target_z=smi_or_z,
mol_fps=mol_fps,
smis=smis,
index_all_mols=index_all_mols,
template_strs=template_strs,
temp_to_rcts=temp_to_rcts,
rct_to_temps=rct_to_temps,
input_dim=model_config["input_fp_dim"],
radius=model_config["radius"],
t_max=args.max_steps,
)
return tree
if __name__ == "__main__":
# pool must be guarded by __main__
########### PREPARE THE SEEDS ###########
# load starting seed SMILES
with open(args.path_seed_smis, "r") as f:
seed_smis = [l.strip() for l in f.readlines()]
assert (
len(seed_smis) >= args.num_parents
), f"number of seed SMILES: {len(seed_smis)} less than --num_parents {args.num_parents}"
if len(seed_smis) > args.num_parents:
seed_smis = seed_smis[: args.num_parents]
# get oracle function
oracle = get_oracle(args.property)
# score seed SMILES against desired property
with Pool(args.ncpu) as p:
seed_scores = []
for s in tqdm(
p.imap(oracle, seed_smis), total=len(seed_smis), desc="scoring seed SMILES"
):
seed_scores.append(s)
seed_scores = np.array(seed_scores)
# decode with seed SMILES as targets
if args.path_seed_trees is None:
print("decoding with seed SMILES as target_smi")
seed_trees = []
cnt_success, cnt_fail = 0, 0
with Pool(args.ncpu) as p:
for tree in tqdm(
p.imap(decode_smi_or_z, seed_smis),
total=len(seed_smis),
desc="decoding seed SMILES",
):
if tree:
cnt_success += 1
seed_trees.append(tree)
else:
cnt_fail += 1
print(f"num targets: {len(seed_smis)}")
print(f"num success: {cnt_success} ({cnt_success / len(seed_smis) * 100:.2f}%)")
print(f"num fail: {cnt_fail} ({cnt_fail / len(seed_smis) * 100:.2f}%)")
with open(args.path_save_ckpt_dir / "seed_trees.pickle", "wb") as f:
pickle.dump(seed_trees, f)
else:
print("loading trees decoded from seed SMILES as target_smi")
with open(args.path_seed_trees, "rb") as f:
seed_trees = pickle.load(f)
# score decoded SMILES against desired property
seed_decoded_smis = [tree.molecules[-1].smi for tree in seed_trees]
seed_decoded_scores = []
with Pool(args.ncpu) as p:
for score in tqdm(
p.imap(oracle, seed_decoded_smis),
total=len(seed_decoded_smis),
desc="scoring SMILES decoded from seeds",
):
seed_decoded_scores.append(score)
seed_decoded_scores = np.array(seed_decoded_scores)
print(
f"average score of seed SMILES: {seed_scores.mean():.4f} (+-{seed_scores.std():.4f})"
)
print(
f"average score of SMILES decoded from seeds: {seed_decoded_scores.mean():.4f} (+-{seed_decoded_scores.std():.4f})"
)
########### RUN THE GENETIC ALGORITHM ###########
# encode seeds into fingerprints
seed_fps = [
smi_to_bit_fp(smi, radius=args.radius, fp_size=args.fp_size)
for smi in seed_smis
]
parents = np.array(seed_fps)
# crossover --> mutate --> score, until stopping criteria
score_history = deque(maxlen=args.early_stop_patience)
for gen_idx in tqdm(range(args.generations), desc="running genetic algorithm"):
print("#" * 50)
print(f"generation {gen_idx}")
torch.cuda.empty_cache()
gc.collect()
offsprings = crossover(
parents,
num_offsprings=args.num_offsprings,
mean=args.cross_mean,
std=args.cross_std,
)
offsprings = mutate(offsprings, num_bits=args.mutate_bits, p=args.mutate_prob)
# run the decoding on single process
decoded_trees = []
cnt_success, cnt_fail = 0, 0
with Pool(args.ncpu) as p:
for tree in tqdm(
p.imap(decode_smi_or_z, offsprings, chunksize=1), # multi process
total=len(offsprings),
desc="decoding offsprings",
):
# purely single process
# for offspring in tqdm(
# offsprings,
# total=len(offsprings),
# desc="decoding offsprings",
# ):
# tree = decode_smi_or_z(offspring)
if tree:
cnt_success += 1
decoded_trees.append(tree)
else:
cnt_fail += 1
print(f"num targets: {len(offsprings)}")
print(
f"num success: {cnt_success} ({cnt_success / len(offsprings) * 100:.2f}%)"
)
print(f"num fail: {cnt_fail} ({cnt_fail / len(offsprings) * 100:.2f}%)")
# score decoded SMILES against desired property
decoded_smis = [tree.molecules[-1].smi for tree in decoded_trees]
decoded_scores = []
with Pool(args.ncpu) as p:
for score in tqdm(
p.imap(oracle, decoded_smis),
total=len(decoded_smis),
desc="scoring decoded SMILES",
):
decoded_scores.append(score)
mean_decoded_score = sum(decoded_scores) / len(decoded_scores)
print(f"average score of all decoded SMILES: {mean_decoded_score:.4f}")
# select the best molecules (SMILES) as parents for next generation
decoded_scores = np.array(decoded_scores)
idxs_desc = np.argsort(decoded_scores)[::-1]
decoded_scores = decoded_scores[idxs_desc]
decoded_smis = np.array(decoded_smis)[idxs_desc]
decoded_trees = np.array(decoded_trees)[idxs_desc]
parents = np.array(
[
smi_to_bit_fp(smi, radius=args.radius, fp_size=args.fp_size)
for smi in decoded_smis[: args.num_parents]
]
)
print(
f"average score of top-{args.num_parents} decoded SMILES: {decoded_scores[:args.num_parents].mean():.4f}"
)
print(f"average score of top-1 decoded SMILES: {decoded_scores[0]:.4f}")
print(
f"average score of top-10 decoded SMILES: {decoded_scores[:10].mean():.4f}"
)
if args.save_every_gen:
# checkpoint
with open(args.path_save_ckpt_dir / f"trees_{gen_idx}.pickle", "wb") as f:
pickle.dump(decoded_trees.tolist(), f)
with open(args.path_save_ckpt_dir / f"{gen_idx}_smis.txt", "w") as f:
f.write("\n".join(decoded_smis.astype(str)))
with open(args.path_save_ckpt_dir / f"{gen_idx}_scores.txt", "w") as f:
f.write("\n".join(decoded_scores.astype(str)))
np.savez(str(args.path_save_ckpt_dir / f"{gen_idx}_fps.npz"), a=offsprings)
# decide whether to early stop
score_history.appendleft(mean_decoded_score)
if (
len(score_history) == args.early_stop_patience
): # num elapsed generations >= early_stop_patience
if score_history[0] - score_history[-1] < args.early_stop_delta:
print(
f"early stopping because rise in scores: {score_history[-1] - score_history[0]:.4f}"
)
print(f"less than --early_stop_delta: {args.early_stop_delta:.4f}")
break
# save outputs from final generation for metric evaluation
with open(args.path_save_ckpt_dir / "trees_final.pickle", "wb") as f:
pickle.dump(decoded_trees.tolist(), f)
with open(args.path_save_ckpt_dir / "smis_final.txt", "w") as f:
f.write("\n".join(decoded_smis.astype(str)))
with open(args.path_save_ckpt_dir / "scores_final.txt", "w") as f:
f.write("\n".join(decoded_scores.astype(str)))
np.savez(str(args.path_save_ckpt_dir / "fps_final.npz"), a=offsprings)