Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

"error: could not find a version that satisfies the requirement setuptools (from versions: none)" #24

Open
ddlinh opened this issue May 18, 2023 · 1 comment

Comments

@ddlinh
Copy link

ddlinh commented May 18, 2023

I cannot install the package fasttreeshap using pip in python 3.8 due to the error below. I'm using setuptools as version 51.0.0.

How can I solve this?

Many thanks,
image

@Mathanraj-Sharma
Copy link

@ddlinh From the stack trace you shared I think you had a connection issue (pip is trying to establish a HTTPS connection to the internet and it is failing)

For me it worked like a charm

  ~/Downloads ❯ pip install fasttreeshap        fast-tree-shap at  13:52:46
Collecting fasttreeshap
  Downloading fasttreeshap-0.1.6.tar.gz (287 kB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 287.0/287.0 kB 552.6 kB/s eta 0:00:00
  Installing build dependencies ... done
  Getting requirements to build wheel ... done
  Preparing metadata (pyproject.toml) ... done
Collecting numpy (from fasttreeshap)
  Downloading numpy-1.24.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.3 MB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 17.3/17.3 MB 4.5 MB/s eta 0:00:00
Collecting scipy (from fasttreeshap)
  Using cached scipy-1.10.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (34.5 MB)
Collecting scikit-learn (from fasttreeshap)
  Using cached scikit_learn-1.2.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.8 MB)
Collecting pandas (from fasttreeshap)
  Using cached pandas-2.0.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.3 MB)
Collecting tqdm>4.25.0 (from fasttreeshap)
  Using cached tqdm-4.65.0-py3-none-any.whl (77 kB)
Collecting packaging>20.9 (from fasttreeshap)
  Using cached packaging-23.1-py3-none-any.whl (48 kB)
Collecting slicer==0.0.7 (from fasttreeshap)
  Using cached slicer-0.0.7-py3-none-any.whl (14 kB)
Collecting numba (from fasttreeshap)
  Downloading numba-0.57.1-cp38-cp38-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (3.6 MB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 3.6/3.6 MB 3.9 MB/s eta 0:00:00
Collecting cloudpickle (from fasttreeshap)
  Downloading cloudpickle-2.2.1-py3-none-any.whl (25 kB)
Collecting psutil (from fasttreeshap)
  Using cached psutil-5.9.5-cp36-abi3-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (282 kB)
Collecting shap (from fasttreeshap)
  Downloading shap-0.41.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (575 kB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 575.9/575.9 kB 4.3 MB/s eta 0:00:00
Collecting llvmlite<0.41,>=0.40.0dev0 (from numba->fasttreeshap)
  Downloading llvmlite-0.40.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (42.1 MB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 42.1/42.1 MB 3.0 MB/s eta 0:00:00
Collecting importlib-metadata (from numba->fasttreeshap)
  Downloading importlib_metadata-6.7.0-py3-none-any.whl (22 kB)
Collecting python-dateutil>=2.8.2 (from pandas->fasttreeshap)
  Using cached python_dateutil-2.8.2-py2.py3-none-any.whl (247 kB)
Collecting pytz>=2020.1 (from pandas->fasttreeshap)
  Using cached pytz-2023.3-py2.py3-none-any.whl (502 kB)
Collecting tzdata>=2022.1 (from pandas->fasttreeshap)
  Using cached tzdata-2023.3-py2.py3-none-any.whl (341 kB)
Collecting joblib>=1.1.1 (from scikit-learn->fasttreeshap)
  Using cached joblib-1.2.0-py3-none-any.whl (297 kB)
Collecting threadpoolctl>=2.0.0 (from scikit-learn->fasttreeshap)
  Using cached threadpoolctl-3.1.0-py3-none-any.whl (14 kB)
Collecting six>=1.5 (from python-dateutil>=2.8.2->pandas->fasttreeshap)
  Using cached six-1.16.0-py2.py3-none-any.whl (11 kB)
Collecting zipp>=0.5 (from importlib-metadata->numba->fasttreeshap)
  Using cached zipp-3.15.0-py3-none-any.whl (6.8 kB)
Building wheels for collected packages: fasttreeshap
  Building wheel for fasttreeshap (pyproject.toml) ... done
  Created wheel for fasttreeshap: filename=fasttreeshap-0.1.6-cp38-cp38-linux_x86_64.whl size=445532 sha256=9c3d5b33fea13a5ac9599fdfe75ed4ce7a6e6e81926198d7501f708f5e5f8e3c
  Stored in directory: /home/mathanraj-sharma/.cache/pip/wheels/38/d5/0e/220cd272e581c1004f9f34e4df273a44c94a6122100ecf034f
Successfully built fasttreeshap
Installing collected packages: pytz, zipp, tzdata, tqdm, threadpoolctl, slicer, six, psutil, packaging, numpy, llvmlite, joblib, cloudpickle, scipy, python-dateutil, importlib-metadata, scikit-learn, pandas, numba, shap, fasttreeshap
Successfully installed cloudpickle-2.2.1 fasttreeshap-0.1.6 importlib-metadata-6.7.0 joblib-1.2.0 llvmlite-0.40.1 numba-0.57.1 numpy-1.24.4 packaging-23.1 pandas-2.0.2 psutil-5.9.5 python-dateutil-2.8.2 pytz-2023.3 scikit-learn-1.2.2 scipy-1.10.1 shap-0.41.0 six-1.16.0 slicer-0.0.7 threadpoolctl-3.1.0 tqdm-4.65.0 tzdata-2023.3 zipp-3.15.0

Environment

# packages in environment at /home/mathanraj-sharma/miniconda3/envs/fast-tree-shap:
#
# Name                    Version                   Build  Channel
_libgcc_mutex             0.1                        main    defaults
_openmp_mutex             5.1                       1_gnu    defaults
ca-certificates           2023.05.30           h06a4308_0    defaults
cloudpickle               2.2.1                    pypi_0    pypi
fasttreeshap              0.1.6                    pypi_0    pypi
importlib-metadata        6.7.0                    pypi_0    pypi
joblib                    1.2.0                    pypi_0    pypi
ld_impl_linux-64          2.38                 h1181459_1    defaults
libffi                    3.4.4                h6a678d5_0    defaults
libgcc-ng                 11.2.0               h1234567_1    defaults
libgomp                   11.2.0               h1234567_1    defaults
libstdcxx-ng              11.2.0               h1234567_1    defaults
llvmlite                  0.40.1                   pypi_0    pypi
ncurses                   6.4                  h6a678d5_0    defaults
numba                     0.57.1                   pypi_0    pypi
numpy                     1.24.4                   pypi_0    pypi
openssl                   3.0.9                h7f8727e_0    defaults
packaging                 23.1                     pypi_0    pypi
pandas                    2.0.2                    pypi_0    pypi
pip                       23.1.2           py38h06a4308_0    defaults
psutil                    5.9.5                    pypi_0    pypi
python                    3.8.16               h955ad1f_4    defaults
python-dateutil           2.8.2                    pypi_0    pypi
pytz                      2023.3                   pypi_0    pypi
readline                  8.2                  h5eee18b_0    defaults
scikit-learn              1.2.2                    pypi_0    pypi
scipy                     1.10.1                   pypi_0    pypi
setuptools                67.8.0           py38h06a4308_0    defaults
shap                      0.41.0                   pypi_0    pypi
six                       1.16.0                   pypi_0    pypi
slicer                    0.0.7                    pypi_0    pypi
sqlite                    3.41.2               h5eee18b_0    defaults
threadpoolctl             3.1.0                    pypi_0    pypi
tk                        8.6.12               h1ccaba5_0    defaults
tqdm                      4.65.0                   pypi_0    pypi
tzdata                    2023.3                   pypi_0    pypi
wheel                     0.38.4           py38h06a4308_0    defaults
xz                        5.4.2                h5eee18b_0    defaults
zipp                      3.15.0                   pypi_0    pypi
zlib                      1.2.13               h5eee18b_0    defaults

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants