-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathdataset_davis.py
300 lines (288 loc) · 13.8 KB
/
dataset_davis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
"""
The DAVIS dataset wrapper for One-Shot Mudulation Network
"""
from PIL import Image
from scipy import ndimage
import os
import numpy as np
import sys
import random
import multiprocessing as mp
import pydensecrf.densecrf as dcrf
from pydensecrf.utils import unary_from_labels, unary_from_softmax, create_pairwise_bilateral, create_pairwise_gaussian
from util import get_mask_bbox, get_gb_image, to_bgr, mask_image, data_augmentation, \
adaptive_crop_box, get_dilate_structure, perturb_mask, get_scaled_box
def _get_obj_mask(image, idx):
return Image.fromarray((np.array(image) == idx).astype(np.uint8))
def get_one(sample, new_size, args):
if len(sample) == 4:
# guide image is both for appearance and location guidance
guide_image = Image.open(sample[0])
guide_label = Image.open(sample[1])
image = Image.open(sample[2])
label = Image.open(sample[3])
ref_label = guide_label
else:
# guide image is only for appearance guidance, ref label is only for location guidance
guide_image = Image.open(sample[0])
guide_label = Image.open(sample[1])
#guide_image = Image.open(sample[2])
ref_label = Image.open(sample[2])
image = Image.open(sample[3])
label = Image.open(sample[4])
if len(sample) > 5:
label_id = sample[5]
else:
label_id = 0
image = image.resize(new_size, Image.BILINEAR)
label = label.resize(new_size, Image.NEAREST)
ref_label = ref_label.resize(new_size, Image.NEAREST)
guide_label = guide_label.resize(guide_image.size, Image.NEAREST)
if label_id > 0:
guide_label = _get_obj_mask(guide_label, label_id)
ref_label = _get_obj_mask(ref_label, label_id)
label = _get_obj_mask(label, label_id)
guide_label_data = np.array(guide_label)
bbox = get_mask_bbox(guide_label_data)
guide_image = guide_image.crop(bbox)
guide_label = guide_label.crop(bbox)
guide_image, guide_label = data_augmentation(guide_image, guide_label,
args.guide_size, data_aug_flip = args.data_aug_flip,
keep_aspect_ratio = args.vg_keep_aspect_ratio,
random_crop_ratio = args.vg_random_crop_ratio,
random_rotate_angle = args.vg_random_rotate_angle, color_aug = args.vg_color_aug)
if not args.use_original_mask:
gb_image = get_gb_image(np.array(ref_label),center_perturb=args.sg_center_perturb_ratio,
std_perturb=args.sg_std_perturb_ratio)
else:
gb_image = perturb_mask(np.array(ref_label))
gb_image = ndimage.morphology.binary_dilation(gb_image,
structure=args.dilate_structure) * 255
image_data = np.array(image, dtype=np.float32)
label_data = np.array(label, dtype=np.uint8) > 0
image_data = to_bgr(image_data)
image_data = (image_data - args.mean_value) * args.scale_value
guide_label_data = np.array(guide_label,dtype=np.uint8)
guide_image_data = np.array(guide_image, dtype=np.float32)
guide_image_data = to_bgr(guide_image_data)
guide_image_data = (guide_image_data - args.mean_value) * args.scale_value
guide_image_data = mask_image(guide_image_data, guide_label_data)
return guide_image_data, gb_image, image_data, label_data
class Dataset:
def __init__(self, train_list, test_list, args,
data_aug=False):
"""Initialize the Dataset object
Args:
train_list: TXT file or list with the paths of the images to use for training (Images must be between 0 and 255)
test_list: TXT file or list with the paths of the images to use for testing (Images must be between 0 and 255)
Returns:
"""
# Define types of data augmentation
random.seed(1234)
self.args = args
self.data_aug = data_aug
self.data_aug_flip = data_aug
self.args.data_aug_flip = data_aug
self.data_aug_scales = args.data_aug_scales
self.use_original_mask = args.use_original_mask
self.vg_random_rotate_angle = args.vg_random_rotate_angle
self.vg_random_crop_ratio = args.vg_random_crop_ratio
self.vg_color_aug = args.vg_color_aug
self.vg_keep_aspect_ratio = args.vg_keep_aspect_ratio
self.vg_pad_ratio = args.vg_pad_ratio
self.sg_center_perturb_ratio = args.sg_center_perturb_ratio
self.sg_std_perturb_ratio = args.sg_std_perturb_ratio
self.bbox_sup = args.bbox_sup
self.multiclass = hasattr(args, 'data_version') and args.data_version == 2017 \
or hasattr(args, 'multiclass') and args.multiclass
self.train_list = train_list
self.test_list = test_list
self.train_ptr = 0
self.test_ptr = 0
self.train_size = len(train_list)
print '#training samples', self.train_size
self.test_size = len(test_list)
self.train_idx = np.arange(self.train_size)
self.test_idx = np.arange(self.test_size)
self.crf_infer_steps = 5
self.args.dilate_structure = get_dilate_structure(5)
np.random.shuffle(self.train_idx)
self.size = args.im_size
self.mean_value = args.mean_value #np.array((104, 117, 123))
self.scale_value = args.scale_value # 0.00787 for mobilenet
self.args.guide_size = (224, 224)
if args.num_loader > 1:
self.pool = mp.Pool(processes=args.num_loader)
def __del__(self):
if self.args.num_loader > 1:
self.pool.close()
self.pool.join()
def next_batch(self, batch_size, phase):
"""Get next batch of image (path) and labels
Args:
batch_size: Size of the batch
phase: Possible options:'train' or 'test'
Returns in training:
images: Numpy arrays of the images
labels: Numpy arrays of the labels
Returns in testing:
images: Numpy array of the images
path: List of image paths
"""
if phase == 'train':
if self.train_ptr + batch_size <= self.train_size:
idx = np.array(self.train_idx[self.train_ptr:self.train_ptr + batch_size])
self.train_ptr += batch_size
else:
np.random.shuffle(self.train_idx)
new_ptr = batch_size
idx = np.array(self.train_idx[:new_ptr])
self.train_ptr = new_ptr
guide_images = []
gb_images = []
images = []
labels = []
if self.data_aug_scales:
scale = random.choice(self.data_aug_scales)
new_size = (int(self.size[0] * scale), int(self.size[1] * scale))
if self.args.num_loader == 1:
batch = [get_one(self.train_list[i], new_size, self.args) for i in idx]
else:
batch = [self.pool.apply(get_one, args=(self.train_list[i], new_size, self.args)) for i in idx]
for guide_image_data, gb_image, image_data, label_data in batch:
guide_images.append(guide_image_data)
gb_images.append(gb_image)
images.append(image_data)
labels.append(label_data)
images = np.array(images)
gb_images = np.array(gb_images)[..., np.newaxis]
labels = np.array(labels)[..., np.newaxis]
guide_images = np.array(guide_images)
return guide_images, gb_images, images, labels
elif phase == 'test':
guide_images = []
gb_images = []
images = []
image_paths = []
self.crop_boxes = []
self.images = []
assert batch_size == 1, "Only allow batch size = 1 for testing"
if self.test_ptr + batch_size < self.test_size:
idx = np.array(self.test_idx[self.test_ptr:self.test_ptr + batch_size])
self.test_ptr += batch_size
else:
new_ptr = (self.test_ptr + batch_size) % self.test_size
idx = np.hstack((self.test_idx[self.test_ptr:], self.test_idx[:new_ptr]))
self.test_ptr = new_ptr
i = idx[0]
sample = self.test_list[i]
if len(sample) > 4:
label_id = sample[4]
else:
label_id = 0
if sample[0] == None:
# visual guide image / mask is none, only read spatial guide and input image
first_frame = False
ref_label = Image.open(sample[2])
image = Image.open(sample[3])
frame_name = sample[3].split('/')[-1].split('.')[0] + '.png'
if len(sample) > 5:
# vid_path/label_id/frame_name
ref_name = os.path.join(sample[5], frame_name)
elif self.multiclass:
# seq_name/label_id/frame_name
ref_name = os.path.join(*(sample[2].split('/')[-3:-1] + [frame_name]))
else:
# seq_name/frame_name
ref_name = os.path.join(sample[2].split('/')[-2], frame_name)
else:
# only process visual guide image / mask
first_frame = True
guide_image = Image.open(sample[0])
guide_label = Image.open(sample[1])
if len(sample) > 5:
# vid_path/label_id/frame_name
ref_name = os.path.join(sample[5], sample[1].split('/')[-1])
elif self.multiclass:
# seq_name/label_id/frame_name
ref_name = os.path.join(*(sample[1].split('/')[-3:]))
else:
# seq_name/frame_name
ref_name = os.path.join(*(sample[1].split('/')[-2:]))
if not first_frame:
if len(self.size) == 2:
self.new_size = self.size
else:
# resize short size of image to self.size[0]
resize_ratio = max(float(self.size[0])/image.size[0], float(self.size[0])/image.size[1])
self.new_size = (int(resize_ratio * image.size[0]), int(resize_ratio * image.size[1]))
ref_label = ref_label.resize(self.new_size, Image.NEAREST)
if label_id > 0:
ref_label = _get_obj_mask(ref_label, label_id)
ref_label_data = np.array(ref_label)
image_ref_crf = image.resize(self.new_size, Image.BILINEAR)
self.images.append(np.array(image_ref_crf))
image = image.resize(self.new_size, Image.BILINEAR)
if self.use_original_mask:
gb_image = ndimage.morphology.binary_dilation(ref_label_data,
structure=self.args.dilate_structure) * 255
else:
gb_image = get_gb_image(ref_label_data, center_perturb=0, std_perturb=0)
image_data = np.array(image, dtype=np.float32)
image_data = to_bgr(image_data)
image_data = (image_data - self.mean_value) * self.scale_value
gb_images.append(gb_image)
images.append(image_data)
images = np.array(images)
gb_images = np.array(gb_images)[...,np.newaxis]
guide_images = None
else:
# process visual guide images
# resize to same size of guide_image first, in case of full resolution input
guide_label = guide_label.resize(guide_image.size, Image.NEAREST)
if label_id > 0:
guide_label = _get_obj_mask(guide_label, label_id)
bbox = get_mask_bbox(np.array(guide_label))
guide_image = guide_image.crop(bbox)
guide_label = guide_label.crop(bbox)
guide_image, guide_label = data_augmentation(guide_image, guide_label,
self.args.guide_size, data_aug_flip=False, pad_ratio = self.vg_pad_ratio, keep_aspect_ratio = self.vg_keep_aspect_ratio)
guide_image_data = np.array(guide_image, dtype=np.float32)
guide_image_data = to_bgr(guide_image_data)
guide_image_data = (guide_image_data - self.mean_value) * self.scale_value
guide_label_data = np.array(guide_label, dtype=np.uint8)
if not self.bbox_sup:
guide_image_data = mask_image(guide_image_data, guide_label_data)
guide_images.append(guide_image_data)
guide_images = np.array(guide_images)
images = None
gb_images = None
image_paths.append(ref_name)
return guide_images, gb_images, images, image_paths
else:
return None, None, None, None
def crf_processing(self, image, label, soft_label=False):
crf = dcrf.DenseCRF2D(image.shape[1], image.shape[0], 2)
if not soft_label:
unary = unary_from_labels(label, 2, gt_prob=0.9, zero_unsure=False)
else:
if len(label.shape)==2:
p_neg = 1.0 - label
label = np.concatenate((p_neg[...,np.newaxis], label[...,np.newaxis]), axis=2)
label = label.transpose((2,0,1))
unary = unary_from_softmax(label)
crf.setUnaryEnergy(unary)
crf.addPairwiseGaussian(sxy=(3,3), compat=3)
crf.addPairwiseBilateral(sxy=(40, 40), srgb=(5, 5, 5), rgbim=image, compat=10)
crf_out = crf.inference(self.crf_infer_steps)
# Find out the most probable class for each pixel.
return np.argmax(crf_out, axis=0).reshape((image.shape[0], image.shape[1]))
def get_train_size(self):
return self.train_size
def get_test_size(self):
return self.test_size
def train_img_size(self):
return self.size
def reset_idx(self):
self.train_ptr = 0
self.test_ptr = 0