-
Notifications
You must be signed in to change notification settings - Fork 43
/
Copy pathturbojpeg.py
991 lines (911 loc) · 37.7 KB
/
turbojpeg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
# -*- coding: UTF-8 -*-
#
# PyTurboJPEG - A Python wrapper of libjpeg-turbo for decoding and encoding JPEG image.
#
# Copyright (c) 2018-2024, Lilo Huang. All rights reserved.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
__author__ = 'Lilo Huang <kuso.cc@gmail.com>'
__version__ = '1.7.7'
from ctypes import *
from ctypes.util import find_library
import platform
import numpy as np
import math
import warnings
import os
from struct import unpack, calcsize
# default libTurboJPEG library path
DEFAULT_LIB_PATHS = {
'Darwin': [
'/usr/local/opt/jpeg-turbo/lib/libturbojpeg.dylib',
'/opt/libjpeg-turbo/lib64/libturbojpeg.dylib',
'/opt/homebrew/opt/jpeg-turbo/lib/libturbojpeg.dylib'
],
'Linux': [
'/usr/lib/x86_64-linux-gnu/libturbojpeg.so.0',
'/usr/lib/aarch64-linux-gnu/libturbojpeg.so.0',
'/usr/lib/libturbojpeg.so.0',
'/usr/lib64/libturbojpeg.so.0',
'/opt/libjpeg-turbo/lib64/libturbojpeg.so'
],
'FreeBSD': [
'/usr/local/lib/libturbojpeg.so.0',
'/usr/local/lib/libturbojpeg.so'
],
'NetBSD': [
'/usr/pkg/lib/libturbojpeg.so.0',
'/usr/pkg/lib/libturbojpeg.so'
],
'Windows': ['C:/libjpeg-turbo64/bin/turbojpeg.dll']
}
# error codes
# see details in https://github.com/libjpeg-turbo/libjpeg-turbo/blob/master/turbojpeg.h
TJERR_WARNING = 0
TJERR_FATAL = 1
# color spaces
# see details in https://github.com/libjpeg-turbo/libjpeg-turbo/blob/master/turbojpeg.h
TJCS_RGB = 0
TJCS_YCbCr = 1
TJCS_GRAY = 2
TJCS_CMYK = 3
TJCS_YCCK = 4
# pixel formats
# see details in https://github.com/libjpeg-turbo/libjpeg-turbo/blob/master/turbojpeg.h
TJPF_RGB = 0
TJPF_BGR = 1
TJPF_RGBX = 2
TJPF_BGRX = 3
TJPF_XBGR = 4
TJPF_XRGB = 5
TJPF_GRAY = 6
TJPF_RGBA = 7
TJPF_BGRA = 8
TJPF_ABGR = 9
TJPF_ARGB = 10
TJPF_CMYK = 11
# chrominance subsampling options
# see details in https://github.com/libjpeg-turbo/libjpeg-turbo/blob/master/turbojpeg.h
TJSAMP_444 = 0
TJSAMP_422 = 1
TJSAMP_420 = 2
TJSAMP_GRAY = 3
TJSAMP_440 = 4
TJSAMP_411 = 5
TJSAMP_441 = 6
# transform operations
# see details in https://github.com/libjpeg-turbo/libjpeg-turbo/blob/master/turbojpeg.h
TJXOP_NONE = 0
TJXOP_HFLIP = 1
TJXOP_VFLIP = 2
TJXOP_TRANSPOSE = 3
TJXOP_TRANSVERSE = 4
TJXOP_ROT90 = 5
TJXOP_ROT180 = 6
TJXOP_ROT270 = 7
# transform options
# see details in https://github.com/libjpeg-turbo/libjpeg-turbo/blob/master/turbojpeg.h
TJXOPT_PERFECT = 1
TJXOPT_TRIM = 2
TJXOPT_CROP = 4
TJXOPT_GRAY = 8
TJXOPT_NOOUTPUT = 16
TJXOPT_PROGRESSIVE = 32
TJXOPT_COPYNONE = 64
# pixel size
# see details in https://github.com/libjpeg-turbo/libjpeg-turbo/blob/master/turbojpeg.h
tjPixelSize = [3, 3, 4, 4, 4, 4, 1, 4, 4, 4, 4, 4]
# MCU block width (in pixels) for a given level of chrominance subsampling.
# MCU block sizes:
# - 8x8 for no subsampling or grayscale
# - 16x8 for 4:2:2
# - 8x16 for 4:4:0
# - 16x16 for 4:2:0
# - 32x8 for 4:1:1
tjMCUWidth = [8, 16, 16, 8, 8, 32]
# MCU block height (in pixels) for a given level of chrominance subsampling.
# MCU block sizes:
# - 8x8 for no subsampling or grayscale
# - 16x8 for 4:2:2
# - 8x16 for 4:4:0
# - 16x16 for 4:2:0
# - 32x8 for 4:1:1
tjMCUHeight = [8, 8, 16, 8, 16, 8]
# miscellaneous flags
# see details in https://github.com/libjpeg-turbo/libjpeg-turbo/blob/master/turbojpeg.h
# note: TJFLAG_NOREALLOC cannot be supported due to reallocation is needed by PyTurboJPEG.
TJFLAG_BOTTOMUP = 2
TJFLAG_FASTUPSAMPLE = 256
TJFLAG_FASTDCT = 2048
TJFLAG_ACCURATEDCT = 4096
TJFLAG_STOPONWARNING = 8192
TJFLAG_PROGRESSIVE = 16384
TJFLAG_LIMITSCANS = 32768
class CroppingRegion(Structure):
_fields_ = [("x", c_int), ("y", c_int), ("w", c_int), ("h", c_int)]
class ScalingFactor(Structure):
_fields_ = ('num', c_int), ('denom', c_int)
CUSTOMFILTER = CFUNCTYPE(
c_int,
POINTER(c_short),
CroppingRegion,
CroppingRegion,
c_int,
c_int,
c_void_p
)
class BackgroundStruct(Structure):
"""Struct to send data to fill_background callback function.
Parameters
----------
w: c_int
Width of the input image.
h: c_int
Height of the input image.
lum: c_int
Luminance value to use as background when extending the image.
"""
_fields_ = [
("w", c_int),
("h", c_int),
("lum", c_int)
]
class TransformStruct(Structure):
_fields_ = [
("r", CroppingRegion),
("op", c_int),
("options", c_int),
("data", POINTER(BackgroundStruct)),
("customFilter", CUSTOMFILTER)
]
# MCU for luminance is always 8
MCU_WIDTH = 8
MCU_HEIGHT = 8
MCU_SIZE = 64
def fill_background(coeffs_ptr, arrayRegion, planeRegion, componentID, transformID, transform_ptr):
"""Callback function for filling extended crop images with background
color. The callback can be called multiple times for each component, each
call providing a region (defined by arrayRegion) of the image.
Parameters
----------
coeffs_ptr: POINTER(c_short)
Pointer to the coefficient array for the callback.
arrayRegion: CroppingRegion
The width and height coefficient array and its offset relative to
the component plane.
planeRegion: CroppingRegion
The width and height of the component plane of the coefficient array.
componentID: c_int
The component number (i.e. 0, 1, or 2)
transformID: c_int
The index of the transformation in the array of transformation given to
the transform function.
transform_ptr: c_voipd_p
Pointer to the transform structure used for the transformation.
Returns
----------
c_int
CFUNCTYPE function must return an int.
"""
# Only modify luminance data, so we dont need to worry about subsampling
if componentID == 0:
coeff_array_size = arrayRegion.w * arrayRegion.h
# Read the coefficients in the pointer as a np array (no copy)
ArrayType = c_short*coeff_array_size
array_pointer = cast(coeffs_ptr, POINTER(ArrayType))
coeffs = np.frombuffer(array_pointer.contents, dtype=np.int16)
coeffs.shape = (
arrayRegion.h//MCU_WIDTH,
arrayRegion.w//MCU_HEIGHT,
MCU_SIZE
)
# Cast the content of the transform pointer into a transform structure
transform = cast(transform_ptr, POINTER(TransformStruct)).contents
# Cast the content of the callback data pointer in the transform
# structure to a background structure
background_data = cast(
transform.data, POINTER(BackgroundStruct)
).contents
# The coeff array is typically just one MCU heigh, but it is up to the
# libjpeg implementation how to do it. The part of the coeff array that
# is 'left' of 'non-background' data should thus be handled separately
# from the part 'under'. (Most of the time, the coeff array will be
# either 'left' or 'under', but both could happen). Note that start
# and end rows defined below can be outside the arrayRegion, but that
# the range they then define is of 0 length.
# fill mcus left of image
left_start_row = min(arrayRegion.y, background_data.h) - arrayRegion.y
left_end_row = (
min(arrayRegion.y+arrayRegion.h, background_data.h)
- arrayRegion.y
)
for x in range(background_data.w//MCU_WIDTH, planeRegion.w//MCU_WIDTH):
for y in range(
left_start_row//MCU_HEIGHT,
left_end_row//MCU_HEIGHT
):
coeffs[y][x][0] = background_data.lum
# fill mcus under image
bottom_start_row = (
max(arrayRegion.y, background_data.h) - arrayRegion.y
)
bottom_end_row = (
max(arrayRegion.y+arrayRegion.h, background_data.h)
- arrayRegion.y
)
for x in range(0, planeRegion.w//MCU_WIDTH):
for y in range(
bottom_start_row//MCU_HEIGHT,
bottom_end_row//MCU_HEIGHT
):
coeffs[y][x][0] = background_data.lum
return 1
def split_byte_into_nibbles(value):
"""Split byte int into 2 nibbles (4 bits)."""
first = value >> 4
second = value & 0x0F
return first, second
class TurboJPEG(object):
"""A Python wrapper of libjpeg-turbo for decoding and encoding JPEG image."""
def __init__(self, lib_path=None):
turbo_jpeg = cdll.LoadLibrary(
self.__find_turbojpeg() if lib_path is None else lib_path)
self.__init_decompress = turbo_jpeg.tjInitDecompress
self.__init_decompress.restype = c_void_p
self.__buffer_size = turbo_jpeg.tjBufSize
self.__buffer_size.argtypes = [c_int, c_int, c_int]
self.__buffer_size.restype = c_ulong
self.__init_compress = turbo_jpeg.tjInitCompress
self.__init_compress.restype = c_void_p
self.__buffer_size_YUV2 = turbo_jpeg.tjBufSizeYUV2
self.__buffer_size_YUV2.argtypes = [c_int, c_int, c_int, c_int]
self.__buffer_size_YUV2.restype = c_ulong
self.__plane_width = turbo_jpeg.tjPlaneWidth
self.__plane_width.argtypes = [c_int, c_int, c_int]
self.__plane_width.restype = c_int
self.__plane_height = turbo_jpeg.tjPlaneHeight
self.__plane_height.argtypes = [c_int, c_int, c_int]
self.__plane_height.restype = c_int
self.__destroy = turbo_jpeg.tjDestroy
self.__destroy.argtypes = [c_void_p]
self.__destroy.restype = c_int
self.__decompress_header = turbo_jpeg.tjDecompressHeader3
self.__decompress_header.argtypes = [
c_void_p, POINTER(c_ubyte), c_ulong, POINTER(c_int),
POINTER(c_int), POINTER(c_int), POINTER(c_int)]
self.__decompress_header.restype = c_int
self.__decompress = turbo_jpeg.tjDecompress2
self.__decompress.argtypes = [
c_void_p, POINTER(c_ubyte), c_ulong, POINTER(c_ubyte),
c_int, c_int, c_int, c_int, c_int]
self.__decompress.restype = c_int
self.__decompressToYUV2 = turbo_jpeg.tjDecompressToYUV2
self.__decompressToYUV2.argtypes = [
c_void_p, POINTER(c_ubyte), c_ulong, POINTER(c_ubyte),
c_int, c_int, c_int, c_int]
self.__decompressToYUV2.restype = c_int
self.__decompressToYUVPlanes = turbo_jpeg.tjDecompressToYUVPlanes
self.__decompressToYUVPlanes.argtypes = [
c_void_p, POINTER(c_ubyte), c_ulong, POINTER(POINTER(c_ubyte)),
c_int, POINTER(c_int), c_int, c_int]
self.__decompressToYUVPlanes.restype = c_int
self.__compress = turbo_jpeg.tjCompress2
self.__compress.argtypes = [
c_void_p, POINTER(c_ubyte), c_int, c_int, c_int, c_int,
POINTER(c_void_p), POINTER(c_ulong), c_int, c_int, c_int]
self.__compress.restype = c_int
self.__compressFromYUV = turbo_jpeg.tjCompressFromYUV
self.__compressFromYUV.argtypes = [
c_void_p, POINTER(c_ubyte), c_int, c_int, c_int, c_int,
POINTER(c_void_p), POINTER(c_ulong), c_int, c_int]
self.__compressFromYUV.restype = c_int
self.__init_transform = turbo_jpeg.tjInitTransform
self.__init_transform.restype = c_void_p
self.__transform = turbo_jpeg.tjTransform
self.__transform.argtypes = [
c_void_p, POINTER(c_ubyte), c_ulong, c_int, POINTER(c_void_p),
POINTER(c_ulong), POINTER(TransformStruct), c_int]
self.__transform.restype = c_int
self.__transform3 = getattr(turbo_jpeg, 'tj3Transform', None)
if self.__transform3 is not None:
self.__transform3.argtypes = [
c_void_p, POINTER(c_ubyte), c_size_t, c_int, POINTER(c_void_p),
POINTER(c_size_t), POINTER(TransformStruct)]
self.__transform3.restype = c_int
self.__free = turbo_jpeg.tjFree
self.__free.argtypes = [c_void_p]
self.__free.restype = None
self.__get_error_str = turbo_jpeg.tjGetErrorStr
self.__get_error_str.restype = c_char_p
# tjGetErrorStr2 is only available in newer libjpeg-turbo
self.__get_error_str2 = getattr(turbo_jpeg, 'tjGetErrorStr2', None)
if self.__get_error_str2 is not None:
self.__get_error_str2.argtypes = [c_void_p]
self.__get_error_str2.restype = c_char_p
# tjGetErrorCode is only available in newer libjpeg-turbo
self.__get_error_code = getattr(turbo_jpeg, 'tjGetErrorCode', None)
if self.__get_error_code is not None:
self.__get_error_code.argtypes = [c_void_p]
self.__get_error_code.restype = c_int
get_scaling_factors = turbo_jpeg.tjGetScalingFactors
get_scaling_factors.argtypes = [POINTER(c_int)]
get_scaling_factors.restype = POINTER(ScalingFactor)
num_scaling_factors = c_int()
scaling_factors = get_scaling_factors(byref(num_scaling_factors))
self.__scaling_factors = frozenset(
(scaling_factors[i].num, scaling_factors[i].denom)
for i in range(num_scaling_factors.value)
)
def decode_header(self, jpeg_buf):
"""decodes JPEG header and returns image properties as a tuple.
e.g. (width, height, jpeg_subsample, jpeg_colorspace)
"""
handle = self.__init_decompress()
try:
width = c_int()
height = c_int()
jpeg_subsample = c_int()
jpeg_colorspace = c_int()
jpeg_array = np.frombuffer(jpeg_buf, dtype=np.uint8)
src_addr = self.__getaddr(jpeg_array)
status = self.__decompress_header(
handle, src_addr, jpeg_array.size, byref(width), byref(height),
byref(jpeg_subsample), byref(jpeg_colorspace))
if status != 0:
self.__report_error(handle)
return (width.value, height.value, jpeg_subsample.value, jpeg_colorspace.value)
finally:
self.__destroy(handle)
def decode(self, jpeg_buf, pixel_format=TJPF_BGR, scaling_factor=None, flags=0):
"""decodes JPEG memory buffer to numpy array."""
handle = self.__init_decompress()
try:
jpeg_array = np.frombuffer(jpeg_buf, dtype=np.uint8)
src_addr = self.__getaddr(jpeg_array)
scaled_width, scaled_height, _, _ = \
self.__get_header_and_dimensions(handle, jpeg_array.size, src_addr, scaling_factor)
img_array = np.empty(
[scaled_height, scaled_width, tjPixelSize[pixel_format]],
dtype=np.uint8)
dest_addr = self.__getaddr(img_array)
status = self.__decompress(
handle, src_addr, jpeg_array.size, dest_addr, scaled_width,
0, scaled_height, pixel_format, flags)
if status != 0:
self.__report_error(handle)
return img_array
finally:
self.__destroy(handle)
def decode_to_yuv(self, jpeg_buf, scaling_factor=None, pad=4, flags=0):
"""decodes JPEG memory buffer to yuv array."""
handle = self.__init_decompress()
try:
jpeg_array = np.frombuffer(jpeg_buf, dtype=np.uint8)
src_addr = self.__getaddr(jpeg_array)
scaled_width, scaled_height, jpeg_subsample, _ = \
self.__get_header_and_dimensions(handle, jpeg_array.size, src_addr, scaling_factor)
buffer_size = self.__buffer_size_YUV2(scaled_width, pad, scaled_height, jpeg_subsample)
buffer_array = np.empty(buffer_size, dtype=np.uint8)
dest_addr = self.__getaddr(buffer_array)
status = self.__decompressToYUV2(
handle, src_addr, jpeg_array.size, dest_addr, scaled_width,
pad, scaled_height, flags)
if status != 0:
self.__report_error(handle)
plane_sizes = list()
plane_sizes.append((scaled_height, scaled_width))
if jpeg_subsample != TJSAMP_GRAY:
for i in range(1, 3):
plane_sizes.append((
self.__plane_height(i, scaled_height, jpeg_subsample),
self.__plane_width(i, scaled_width, jpeg_subsample)))
return buffer_array, plane_sizes
finally:
self.__destroy(handle)
def decode_to_yuv_planes(self, jpeg_buf, scaling_factor=None, strides=(0, 0, 0), flags=0):
"""decodes JPEG memory buffer to yuv planes."""
handle = self.__init_decompress()
try:
jpeg_array = np.frombuffer(jpeg_buf, dtype=np.uint8)
src_addr = self.__getaddr(jpeg_array)
scaled_width, scaled_height, jpeg_subsample, _ = \
self.__get_header_and_dimensions(handle, jpeg_array.size, src_addr, scaling_factor)
num_planes = 3
if jpeg_subsample == TJSAMP_GRAY:
num_planes = 1
strides_addr = (c_int * num_planes)()
dest_addr = (POINTER(c_ubyte) * num_planes)()
planes = list()
for i in range(num_planes):
if strides[i] == 0:
strides_addr[i] = self.__plane_width(i, scaled_width, jpeg_subsample)
else:
strides_addr[i] = strides[i]
planes.append(np.empty(
(self.__plane_height(i, scaled_height, jpeg_subsample), strides_addr[i]), dtype=np.uint8))
dest_addr[i] = self.__getaddr(planes[i])
status = self.__decompressToYUVPlanes(
handle, src_addr, jpeg_array.size, dest_addr, scaled_width, strides_addr, scaled_height, flags)
if status != 0:
self.__report_error(handle)
return planes
finally:
self.__destroy(handle)
def encode(self, img_array, quality=85, pixel_format=TJPF_BGR, jpeg_subsample=TJSAMP_422, flags=0):
"""encodes numpy array to JPEG memory buffer."""
handle = self.__init_compress()
try:
jpeg_buf = c_void_p()
jpeg_size = c_ulong()
img_array = np.ascontiguousarray(img_array)
height, width = img_array.shape[:2]
channel = tjPixelSize[pixel_format]
if channel > 1 and (len(img_array.shape) < 3 or img_array.shape[2] != channel):
raise ValueError('Invalid shape for image data')
src_addr = self.__getaddr(img_array)
status = self.__compress(
handle, src_addr, width, img_array.strides[0], height, pixel_format,
byref(jpeg_buf), byref(jpeg_size), jpeg_subsample, quality, flags)
if status != 0:
self.__report_error(handle)
dest_buf = create_string_buffer(jpeg_size.value)
memmove(dest_buf, jpeg_buf.value, jpeg_size.value)
self.__free(jpeg_buf)
return dest_buf.raw
finally:
self.__destroy(handle)
def encode_from_yuv(self, img_array, height, width, quality=85, jpeg_subsample=TJSAMP_420, flags=0):
"""encodes numpy array to JPEG memory buffer."""
handle = self.__init_compress()
try:
jpeg_buf = c_void_p()
jpeg_size = c_ulong()
img_array = np.ascontiguousarray(img_array)
src_addr = self.__getaddr(img_array)
status = self.__compressFromYUV(
handle, src_addr, width, 4, height, jpeg_subsample,
byref(jpeg_buf), byref(jpeg_size), quality, flags)
if status != 0:
self.__report_error(handle)
dest_buf = create_string_buffer(jpeg_size.value)
memmove(dest_buf, jpeg_buf.value, jpeg_size.value)
self.__free(jpeg_buf)
return dest_buf.raw
finally:
self.__destroy(handle)
def scale_with_quality(self, jpeg_buf, scaling_factor=None, quality=85, flags=0):
"""decompresstoYUV with scale factor, recompresstoYUV with quality factor"""
handle = self.__init_decompress()
try:
jpeg_array = np.frombuffer(jpeg_buf, dtype=np.uint8)
src_addr = self.__getaddr(jpeg_array)
scaled_width, scaled_height, jpeg_subsample, _ = self.__get_header_and_dimensions(
handle, jpeg_array.size, src_addr, scaling_factor)
buffer_YUV_size = self.__buffer_size_YUV2(
scaled_height, 4, scaled_width, jpeg_subsample)
img_array = np.empty([buffer_YUV_size])
dest_addr = self.__getaddr(img_array)
status = self.__decompressToYUV2(
handle, src_addr, jpeg_array.size, dest_addr, scaled_width, 4, scaled_height, flags)
if status != 0:
self.__report_error(handle)
self.__destroy(handle)
handle = self.__init_compress()
jpeg_buf = c_void_p()
jpeg_size = c_ulong()
status = self.__compressFromYUV(
handle, dest_addr, scaled_width, 4, scaled_height, jpeg_subsample, byref(jpeg_buf),
byref(jpeg_size), quality, flags)
if status != 0:
self.__report_error(handle)
dest_buf = create_string_buffer(jpeg_size.value)
memmove(dest_buf, jpeg_buf.value, jpeg_size.value)
self.__free(jpeg_buf)
return dest_buf.raw
finally:
self.__destroy(handle)
def crop(self, jpeg_buf, x, y, w, h, preserve=False, gray=False, copynone=False):
"""losslessly crop a jpeg image with optional grayscale"""
handle = self.__init_transform()
try:
jpeg_array = np.frombuffer(jpeg_buf, dtype=np.uint8)
src_addr = self.__getaddr(jpeg_array)
width = c_int()
height = c_int()
jpeg_colorspace = c_int()
jpeg_subsample = c_int()
status = self.__decompress_header(
handle, src_addr, jpeg_array.size, byref(width), byref(height),
byref(jpeg_subsample), byref(jpeg_colorspace))
if status != 0:
self.__report_error(handle)
x, w = self.__axis_to_image_boundaries(
x, w, width.value, preserve, tjMCUWidth[jpeg_subsample.value])
y, h = self.__axis_to_image_boundaries(
y, h, height.value, preserve, tjMCUHeight[jpeg_subsample.value])
region = CroppingRegion(x, y, w, h)
crop_transform = TransformStruct(region, TJXOP_NONE,
TJXOPT_CROP | (gray and TJXOPT_GRAY) | (copynone and TJXOPT_COPYNONE))
return self.__do_transform(handle, src_addr, jpeg_array.size, 1, byref(crop_transform))[0]
finally:
self.__destroy(handle)
def crop_multiple(self, jpeg_buf, crop_parameters, background_luminance=1.0, gray=False, copynone=False):
"""Lossless crop and/or extension operations on jpeg image.
Crop origin(s) needs be divisable by the MCU block size and inside
the input image, or OSError: Invalid crop request is raised.
Parameters
----------
jpeg_buf: bytes
Input jpeg image.
crop_parameters: List[Tuple[int, int, int, int]]
List of crop parameters defining start x and y origin and width
and height of each crop operation.
background_luminance: float
Luminance level (0 -1 ) to fill background when extending image.
Default to 1, resulting in white background.
gray: bool
Produce greyscale output
copynone: bool
True = do not copy EXIF data (False by default)
Returns
----------
List[bytes]
Cropped and/or extended jpeg images.
"""
handle = self.__init_transform()
try:
jpeg_array = np.frombuffer(jpeg_buf, dtype=np.uint8)
src_addr = self.__getaddr(jpeg_array)
image_width = c_int()
image_height = c_int()
jpeg_subsample = c_int()
jpeg_colorspace = c_int()
# Decompress header to get input image size and subsample value
decompress_header_status = self.__decompress_header(
handle,
src_addr,
jpeg_array.size,
byref(image_width),
byref(image_height),
byref(jpeg_subsample),
byref(jpeg_colorspace)
)
if decompress_header_status != 0:
self.__report_error(handle)
# Define cropping regions from input parameters and image size
crop_regions = self.__define_cropping_regions(crop_parameters)
number_of_operations = len(crop_regions)
# Define crop transforms from cropping_regions
crop_transforms = (TransformStruct * number_of_operations)()
for i, crop_region in enumerate(crop_regions):
# The fill_background callback is slow, only use it if needed
if self.__need_fill_background(
crop_region,
(image_width.value, image_height.value),
background_luminance
):
# Use callback to fill in background post-transform
callback_data = BackgroundStruct(
image_width,
image_height,
self.__map_luminance_to_dc_dct_coefficient(
bytearray(jpeg_buf),
background_luminance
)
)
callback = CUSTOMFILTER(fill_background)
crop_transforms[i] = TransformStruct(
crop_region,
TJXOP_NONE,
TJXOPT_PERFECT | TJXOPT_CROP | (gray and TJXOPT_GRAY) | (copynone and TJXOPT_COPYNONE),
pointer(callback_data),
callback
)
else:
crop_transforms[i] = TransformStruct(
crop_region,
TJXOP_NONE,
TJXOPT_PERFECT | TJXOPT_CROP | (gray and TJXOPT_GRAY) | (copynone and TJXOPT_COPYNONE)
)
results = self.__do_transform(handle, src_addr, jpeg_array.size, number_of_operations, crop_transforms)
return results
finally:
self.__destroy(handle)
def __do_transform(self, handle, src_buf, src_size, number_of_transforms, transforms):
"""Do transform.
Parameters
----------
handle: int
Initiated transform handle.
src_buf: LP_c_ubyte
Pointer to source buffer for transform
src_size: int
Size of source buffer.
number_of_transforms: int
Number of transforms to perform.
transforms: CArgObject
C-array of transforms to perform.
Returns
----------
List[bytes]
Cropped and/or extended jpeg images.
"""
# Pointers to output image buffers
dest_array = (c_void_p * number_of_transforms)()
try:
if self.__transform3 is not None:
dest_size = (c_size_t * number_of_transforms)()
transform_status = self.__transform3(
handle,
src_buf,
src_size,
number_of_transforms,
dest_array,
dest_size,
transforms,
)
else:
dest_size = (c_ulong * number_of_transforms)()
transform_status = self.__transform(
handle,
src_buf,
src_size,
number_of_transforms,
dest_array,
dest_size,
transforms,
0
)
if transform_status != 0:
self.__report_error(handle)
# Copy the transform results into python bytes
return [
self.__copy_from_buffer(dest_array[i], dest_size[i])
for i in range(number_of_transforms)
]
finally:
# Free the output image buffers
for dest in dest_array:
self.__free(dest)
@staticmethod
def __copy_from_buffer(buffer, size):
"""Copy bytes from buffer to python bytes."""
dest_buf = create_string_buffer(size)
memmove(dest_buf, buffer, size)
return dest_buf.raw
def __get_header_and_dimensions(self, handle, jpeg_array_size, src_addr, scaling_factor):
"""returns scaled image dimensions and header data"""
if scaling_factor is not None and \
scaling_factor not in self.__scaling_factors:
raise ValueError('supported scaling factors are ' +
str(self.__scaling_factors))
width = c_int()
height = c_int()
jpeg_colorspace = c_int()
jpeg_subsample = c_int()
status = self.__decompress_header(
handle, src_addr, jpeg_array_size, byref(width), byref(height),
byref(jpeg_subsample), byref(jpeg_colorspace))
if status != 0:
self.__report_error(handle)
scaled_width = width.value
scaled_height = height.value
if scaling_factor is not None:
def get_scaled_value(dim, num, denom):
return (dim * num + denom - 1) // denom
scaled_width = get_scaled_value(
scaled_width, scaling_factor[0], scaling_factor[1])
scaled_height = get_scaled_value(
scaled_height, scaling_factor[0], scaling_factor[1])
return scaled_width, scaled_height, jpeg_subsample, jpeg_colorspace
def __axis_to_image_boundaries(self, a, b, img_boundary, preserve, mcuBlock):
img_b = img_boundary - (img_boundary % mcuBlock)
delta_a = a % mcuBlock
if a > img_b:
a = img_b
else:
a = a - delta_a
if not preserve:
b = b + delta_a
if (a + b) > img_b:
b = img_b - a
return a, b
@staticmethod
def __define_cropping_regions(crop_parameters):
"""Return list of crop regions from crop parameters
Parameters
----------
crop_parameters: List[Tuple[int, int, int, int]]
List of crop parameters defining start x and y origin and width
and height of each crop operation.
Returns
----------
List[CroppingRegion]
List of crop operations, size is equal to the product of number of
crop operations to perform in x and y direction.
"""
return [
CroppingRegion(x=crop[0], y=crop[1], w=crop[2], h=crop[3])
for crop in crop_parameters
]
@staticmethod
def __need_fill_background(crop_region, image_size, background_luminance):
"""Return true if crop operation require background fill operation.
Parameters
----------
crop_region: CroppingRegion
The crop region to check.
image_size: [int, int]
Size of input image.
background_luminance: float
Requested background luminance.
Returns
----------
bool
True if crop operation require background fill operation.
"""
return (
(
(crop_region.x + crop_region.w > image_size[0])
or
(crop_region.y + crop_region.h > image_size[1])
)
and (background_luminance != 0.5)
)
@staticmethod
def __find_dqt(jpeg_data, dqt_index):
"""Return byte offset to quantification table with index dqt_index in
jpeg_data.
Parameters
----------
jpeg_data: bytes
Jpeg data.
dqt_index: int
Index of quantificatin table to find (0 - luminance).
Returns
----------
Optional[int]
Byte offset to quantification table, or None if not found.
"""
offset = 0
while offset < len(jpeg_data):
dct_table_offset = jpeg_data[offset:].find(b'\xFF\xDB')
if dct_table_offset == -1:
break
dct_table_offset += offset
dct_table_length = unpack(
'>H',
jpeg_data[dct_table_offset+2:dct_table_offset+4]
)[0]
dct_table_id_offset = dct_table_offset + 4
table_index, _ = split_byte_into_nibbles(
jpeg_data[dct_table_id_offset]
)
if table_index == dqt_index:
return dct_table_offset
offset += dct_table_offset+dct_table_length
return None
@classmethod
def __get_dc_dqt_element(cls, jpeg_data, dqt_index):
"""Return dc quantification element from jpeg_data for quantification
table dqt_index.
Parameters
----------
jpeg_data: bytes
Jpeg data containing quantification table(s).
dqt_index: int
Index of quantificatin table to get (0 - luminance).
Returns
----------
int
Dc quantification element.
"""
dqt_offset = cls.__find_dqt(jpeg_data, dqt_index)
if dqt_offset is None:
raise ValueError(
"Quantisation table {dqt_index} not found in header".format(
dqt_index=dqt_index)
)
precision_offset = dqt_offset+4
precision = split_byte_into_nibbles(jpeg_data[precision_offset])[0]
if precision == 0:
unpack_type = '>b'
elif precision == 1:
unpack_type = '>h'
else:
raise ValueError('Not valid precision definition in dqt')
dc_offset = dqt_offset + 5
dc_length = calcsize(unpack_type)
dc_value = unpack(
unpack_type,
jpeg_data[dc_offset:dc_offset+dc_length]
)[0]
return dc_value
@classmethod
def __map_luminance_to_dc_dct_coefficient(cls, jpeg_data, luminance):
"""Map a luminance level (0 - 1) to quantified dc dct coefficient.
Before quantification dct coefficient have a range -1024 - 1023. This
is reduced upon quantification by the quantification factor. This
function maps the input luminance level range to the quantified dc dct
coefficient range.
Parameters
----------
jpeg_data: bytes
Jpeg data containing quantification table(s).
luminance: float
Luminance level (0 - black, 1 - white).
Returns
----------
int
Quantified luminance dc dct coefficent.
"""
luminance = min(max(luminance, 0), 1)
dc_dqt_coefficient = cls.__get_dc_dqt_element(jpeg_data, 0)
return int(round((luminance * 2047 - 1024) / dc_dqt_coefficient))
def __report_error(self, handle):
"""reports error while error occurred"""
if self.__get_error_code is not None:
# using new error handling logic if possible
if self.__get_error_code(handle) == TJERR_WARNING:
warnings.warn(self.__get_error_string(handle))
return
# fatal error occurred
raise IOError(self.__get_error_string(handle))
def __get_error_string(self, handle):
"""returns error string"""
if self.__get_error_str2 is not None:
# using new interface if possible
return self.__get_error_str2(handle).decode()
# fallback to old interface
return self.__get_error_str().decode()
def __find_turbojpeg(self):
"""returns default turbojpeg library path if possible"""
lib_path = find_library('turbojpeg')
if lib_path is not None:
return lib_path
for lib_path in DEFAULT_LIB_PATHS[platform.system()]:
if os.path.exists(lib_path):
return lib_path
if platform.system() == 'Linux' and 'LD_LIBRARY_PATH' in os.environ:
ld_library_path = os.environ['LD_LIBRARY_PATH']
for path in ld_library_path.split(':'):
lib_path = os.path.join(path, 'libturbojpeg.so.0')
if os.path.exists(lib_path):
return lib_path
raise RuntimeError(
'Unable to locate turbojpeg library automatically. '
'You may specify the turbojpeg library path manually.\n'
'e.g. jpeg = TurboJPEG(lib_path)')
def __getaddr(self, nda):
"""returns the memory address for a given ndarray"""
return cast(nda.__array_interface__['data'][0], POINTER(c_ubyte))
@property
def scaling_factors(self):
return self.__scaling_factors
if __name__ == '__main__':
jpeg = TurboJPEG()
in_file = open('input.jpg', 'rb')
img_array = jpeg.decode(in_file.read())
in_file.close()
out_file = open('output.jpg', 'wb')
out_file.write(jpeg.encode(img_array))
out_file.close()
import cv2
cv2.imshow('image', img_array)
cv2.waitKey(0)