-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain_direct.py
430 lines (367 loc) · 14.4 KB
/
main_direct.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
import argparse
import datetime
import logging
import os
import time
import traceback
import sys
import copy
import torch
import torch.backends.cudnn as cudnn
from torch.autograd import Variable
import torch.nn as nn
from torch.utils.data import Dataset
# option file should be modified according to your expriment
from options import Option
import torchvision.transforms as transforms
from dataloader import DataLoader
from trainer_direct import Trainer
import shutil
import utils as utils
from quantization_utils.quant_modules import *
from pytorchcv.model_provider import get_model as ptcv_get_model
from conditional_batchnorm import CategoricalConditionalBatchNorm2d
import pickle
from PIL import Image
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.data.distributed import DistributedSampler
# from regularizer import get_reg_criterions
class Generator(nn.Module):
def __init__(self, options=None, conf_path=None):
super(Generator, self).__init__()
self.settings = options or Option(conf_path)
self.label_emb = nn.Embedding(self.settings.nClasses, self.settings.latent_dim)
self.init_size = self.settings.img_size // 4
self.l1 = nn.Sequential(nn.Linear(self.settings.latent_dim, 128 * self.init_size ** 2))
self.conv_blocks0 = nn.Sequential(
nn.BatchNorm2d(128),
)
self.conv_blocks1 = nn.Sequential(
nn.Conv2d(128, 128, 3, stride=1, padding=1),
nn.BatchNorm2d(128, 0.8),
nn.LeakyReLU(0.2, inplace=True),
)
self.conv_blocks2 = nn.Sequential(
nn.Conv2d(128, 64, 3, stride=1, padding=1),
nn.BatchNorm2d(64, 0.8),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(64, self.settings.channels, 3, stride=1, padding=1),
nn.Tanh(),
nn.BatchNorm2d(self.settings.channels, affine=False)
)
def forward(self, z, labels):
gen_input = torch.mul(self.label_emb(labels), z)
out = self.l1(gen_input)
out = out.view(out.shape[0], 128, self.init_size, self.init_size)
img = self.conv_blocks0(out)
img = nn.functional.interpolate(img, scale_factor=2)
img = self.conv_blocks1(img)
img = nn.functional.interpolate(img, scale_factor=2)
img = self.conv_blocks2(img)
return img
class Generator_imagenet(nn.Module):
def __init__(self, options=None, conf_path=None):
self.settings = options or Option(conf_path)
super(Generator_imagenet, self).__init__()
self.init_size = self.settings.img_size // 4
self.l1 = nn.Sequential(nn.Linear(self.settings.latent_dim, 128 * self.init_size ** 2))
self.conv_blocks0_0 = CategoricalConditionalBatchNorm2d(1000, 128)
self.conv_blocks1_0 = nn.Conv2d(128, 128, 3, stride=1, padding=1)
self.conv_blocks1_1 = CategoricalConditionalBatchNorm2d(1000, 128, 0.8)
self.conv_blocks1_2 = nn.LeakyReLU(0.2, inplace=True)
self.conv_blocks2_0 = nn.Conv2d(128, 64, 3, stride=1, padding=1)
self.conv_blocks2_1 = CategoricalConditionalBatchNorm2d(1000, 64, 0.8)
self.conv_blocks2_2 = nn.LeakyReLU(0.2, inplace=True)
self.conv_blocks2_3 = nn.Conv2d(64, self.settings.channels, 3, stride=1, padding=1)
self.conv_blocks2_4 = nn.Tanh()
self.conv_blocks2_5 = nn.BatchNorm2d(self.settings.channels, affine=False)
def forward(self, z, labels):
out = self.l1(z)
out = out.view(out.shape[0], 128, self.init_size, self.init_size)
img = self.conv_blocks0_0(out, labels)
img = nn.functional.interpolate(img, scale_factor=2)
img = self.conv_blocks1_0(img)
img = self.conv_blocks1_1(img, labels)
img = self.conv_blocks1_2(img)
img = nn.functional.interpolate(img, scale_factor=2)
img = self.conv_blocks2_0(img)
img = self.conv_blocks2_1(img, labels)
img = self.conv_blocks2_2(img)
img = self.conv_blocks2_3(img)
img = self.conv_blocks2_4(img)
img = self.conv_blocks2_5(img)
return img
class direct_dataset(Dataset):
def __init__(self, settings, logger, dataset):
self.settings = settings
self.logger = logger
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
if dataset in ["cifar10", "cifar100"]:
self.train_transform = transforms.Compose([
transforms.RandomResizedCrop(size=32, scale=(0.5, 1.0)),
transforms.RandomHorizontalFlip(),
])
else:
self.train_transform = transforms.Compose([
transforms.RandomResizedCrop(size=224, scale=(0.5, 1.0)),
transforms.RandomHorizontalFlip(),
])
self.tmp_data = None
self.tmp_label = None
for i in range(1,5):
# data!
path = self.settings.generateDataPath +str(i)+".pickle"
self.logger.info(path)
with open(path, "rb") as fp: # Pickling
gaussian_data = pickle.load(fp)
# import IPython
# IPython.embed()
if self.tmp_data is None:
self.tmp_data = np.concatenate(gaussian_data, axis=0)
else:
self.tmp_data = np.concatenate((self.tmp_data, np.concatenate(gaussian_data, axis=0)))
# label!info
path = self.settings.generateLabelPath + str(i) + ".pickle"
self.logger.info(path)
with open(path, "rb") as fp: # Pickling
labels_list = pickle.load(fp)
if self.tmp_label is None:
self.tmp_label = np.concatenate(labels_list, axis=0)
else:
self.tmp_label = np.concatenate((self.tmp_label, np.concatenate(labels_list, axis=0)))
assert len(self.tmp_label) == len(self.tmp_data)
print(self.tmp_data.shape, self.tmp_label.shape)
print('direct datset image number', len(self.tmp_label))
def __getitem__(self, index):
img = self.tmp_data[index]
label = self.tmp_label[index]
img = self.train_transform(torch.from_numpy(img))
return img, label
def __len__(self):
return len(self.tmp_label)
class ExperimentDesign:
def __init__(self, options=None, args=None, logger=None):
self.settings = options
self.args = args
self.logger = logger
self.train_loader = None
self.test_loader = None
self.model = None
self.model_teacher = None
self.optimizer_state = None
self.trainer = None
self.start_epoch = 0
self.prepare()
def set_logger(self):
# logger = logging.getLogger('baseline')
if dist.get_rank()==0:
file_formatter = logging.Formatter('%(asctime)s %(levelname)s: %(message)s')
file_handler = logging.FileHandler(os.path.join(self.settings.save_path, "train_test.log"))
file_handler.setFormatter(file_formatter)
self.logger.addHandler(file_handler)
self.logger.setLevel(logging.INFO if self.args.local_rank in [-1, 0] else logging.WARN)
return self.logger
def prepare(self):
torch.cuda.set_device(self.args.local_rank)
dist.init_process_group(backend='nccl')
if dist.get_rank() == 0:
self.settings.set_save_path()
shutil.copyfile(self.args.conf_path, os.path.join(self.settings.save_path, os.path.basename(self.args.conf_path)))
shutil.copyfile('./main_direct.py', os.path.join(self.settings.save_path, 'main_direct.py'))
shutil.copyfile('./trainer_direct.py', os.path.join(self.settings.save_path, 'trainer_direct.py'))
self.logger = self.set_logger()
self.settings.paramscheck(self.logger)
self._set_gpu()
self._set_dataloader()
self._set_model()
self._replace()
# self.logger.info(self.model_teacher)
# self.logger.info(self.model)
self._set_trainer()
def _set_gpu(self):
torch.manual_seed(self.settings.manualSeed)
torch.cuda.manual_seed(self.settings.manualSeed)
cudnn.benchmark = True
def _set_dataloader(self):
# create data loader
data_loader = DataLoader(dataset=self.settings.dataset,
batch_size=self.settings.batchSize,
data_path=self.settings.dataPath,
n_threads=self.settings.nThreads,
ten_crop=self.settings.tenCrop,
logger=self.logger)
self.train_loader, self.test_loader = data_loader.getloader()
def _set_model(self):
if self.settings.dataset in ["cifar100", "cifar10"]:
self.model = ptcv_get_model(self.settings.model_name, pretrained=True)
self.model_teacher = ptcv_get_model(self.settings.model_name, pretrained=True)
self.generator = Generator(self.settings)
self.model_teacher.eval()
elif self.settings.dataset in ["imagenet"]:
self.model = ptcv_get_model(self.settings.model_name, pretrained=True)
self.model_teacher = ptcv_get_model(self.settings.model_name, pretrained=True)
self.generator = Generator_imagenet(self.settings)
self.model_teacher.eval()
else:
assert False, "unsupport data set: " + self.settings.dataset
self.model_teacher = torch.nn.SyncBatchNorm.convert_sync_batchnorm(self.model_teacher)
self.model_teacher = DDP(self.model_teacher.to(self.args.local_rank), device_ids=[self.args.local_rank], output_device=self.args.local_rank, broadcast_buffers=False)
self.generator = DDP(self.generator.to(self.args.local_rank), device_ids=[self.args.local_rank], output_device=self.args.local_rank, broadcast_buffers=False)
def _set_trainer(self):
# set lr master
lr_master_S = utils.LRPolicy(self.settings.lr_S,
self.settings.nEpochs,
self.settings.lrPolicy_S)
lr_master_G = utils.LRPolicy(self.settings.lr_G,
self.settings.nEpochs,
self.settings.lrPolicy_G)
params_dict_S = {
'step': self.settings.step_S,
'decay_rate': self.settings.decayRate_S
}
params_dict_G = {
'step': self.settings.step_G,
'decay_rate': self.settings.decayRate_G
}
lr_master_S.set_params(params_dict=params_dict_S)
lr_master_G.set_params(params_dict=params_dict_G)
# set trainer
self.trainer = Trainer(
model=self.model,
model_teacher=self.model_teacher,
generator = self.generator,
train_loader=self.train_loader,
test_loader=self.test_loader,
lr_master_S=lr_master_S,
lr_master_G=lr_master_G,
settings=self.settings,
args = self.args,
logger=self.logger,
opt_type=self.settings.opt_type,
optimizer_state=self.optimizer_state,
run_count=self.start_epoch)
def quantize_model(self,model):
"""
Recursively quantize a pretrained single-precision model to int8 quantized model
model: pretrained single-precision model
"""
weight_bit = self.settings.qw
act_bit = self.settings.qa
# quantize convolutional and linear layers
if type(model) == nn.Conv2d:
quant_mod = Quant_Conv2d(weight_bit=weight_bit)
quant_mod.set_param(model)
return quant_mod
elif type(model) == nn.Linear:
quant_mod = Quant_Linear(weight_bit=weight_bit)
quant_mod.set_param(model)
return quant_mod
# quantize all the activation
elif type(model) == nn.ReLU or type(model) == nn.ReLU6:
return nn.Sequential(*[model, QuantAct(activation_bit=act_bit)])
# recursively use the quantized module to replace the single-precision module
elif type(model) == nn.Sequential:
mods = []
for n, m in model.named_children():
mods.append(self.quantize_model(m))
return nn.Sequential(*mods)
else:
q_model = copy.deepcopy(model)
for attr in dir(model):
mod = getattr(model, attr)
if isinstance(mod, nn.Module) and 'norm' not in attr:
setattr(q_model, attr, self.quantize_model(mod))
return q_model
def _replace(self):
self.model = self.quantize_model(self.model)
self.model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(self.model)
self.model = DDP(self.model.to(self.args.local_rank), device_ids=[self.args.local_rank], output_device=self.args.local_rank, broadcast_buffers=False)
def freeze_model(self,model):
"""
freeze the activation range
"""
if type(model) == QuantAct:
model.fix()
elif type(model) == nn.Sequential:
for n, m in model.named_children():
self.freeze_model(m)
else:
for attr in dir(model):
mod = getattr(model, attr)
if isinstance(mod, nn.Module) and 'norm' not in attr:
self.freeze_model(mod)
return model
def unfreeze_model(self,model):
"""
unfreeze the activation range
"""
if type(model) == QuantAct:
model.unfix()
elif type(model) == nn.Sequential:
for n, m in model.named_children():
self.unfreeze_model(m)
else:
for attr in dir(model):
mod = getattr(model, attr)
if isinstance(mod, nn.Module) and 'norm' not in attr:
self.unfreeze_model(mod)
return model
def run(self):
best_top1 = 100
best_top5 = 100
start_time = time.time()
dataset = direct_dataset(self.settings, self.logger, self.settings.dataset)
direct_dataload = torch.utils.data.DataLoader(dataset,
batch_size=min(self.settings.batchSize, len(dataset)),
sampler = DistributedSampler(dataset))
try:
for epoch in range(self.start_epoch, self.settings.nEpochs):
self.epoch = epoch
self.start_epoch = 0
if epoch < 4:
self.unfreeze_model(self.model)
train_error, train_loss, train5_error = self.trainer.train(epoch=epoch, direct_dataload=direct_dataload)
self.freeze_model(self.model)
if self.settings.dataset in ["cifar100","cifar10"]:
test_error, test_loss, test5_error = self.trainer.test(epoch=epoch)
elif self.settings.dataset in ["imagenet"]:
if epoch >= 0:
test_error, test_loss, test5_error = self.trainer.test(epoch=epoch)
else:
test_error = 100
test5_error = 100
else:
assert False, "invalid data set"
if best_top1 >= test_error:
best_top1 = test_error
best_top5 = test5_error
# self.logger.info(
# 'Save model! The path is ' + os.path.join(self.settings.save_path, "model.pth"))
# if dist.get_rank() == 0:
# torch.save(self.model.state_dict(), os.path.join(self.settings.save_path, "model.pth"))
self.logger.info("#==>Best Result is: Top1 Error: {:f}, Top5 Error: {:f}".format(best_top1, best_top5))
self.logger.info("#==>Best Result is: Top1 Accuracy: {:f}, Top5 Accuracy: {:f}".format(100 - best_top1,
100 - best_top5))
except BaseException as e:
self.logger.error("Training is terminating due to exception: {}".format(str(e)))
traceback.print_exc()
end_time = time.time()
time_interval = end_time - start_time
t_string = "Running Time is: " + str(datetime.timedelta(seconds=time_interval)) + "\n"
self.logger.info(t_string)
return best_top1, best_top5
def main():
logger = logging.getLogger()
parser = argparse.ArgumentParser(description='Baseline')
parser.add_argument('--conf_path', type=str, metavar='conf_path',
help='input the path of config file')
parser.add_argument("--local_rank", type=int, default=-1)
args = parser.parse_args()
option = Option(args.conf_path)
option.manualSeed = 1
experiment = ExperimentDesign(option, args, logger)
experiment.run()
if __name__ == '__main__':
main()