-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathoneD_Meta_ACON.py
37 lines (30 loc) · 1.72 KB
/
oneD_Meta_ACON.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import torch
from torch import nn
class AconC(nn.Module):
r""" ACON activation (activate or not).
# AconC: (p1*x-p2*x) * sigmoid(beta*(p1*x-p2*x)) + p2*x, beta is a learnable parameter
# according to "Activate or Not: Learning Customized Activation" <https://arxiv.org/pdf/2009.04759.pdf>.
"""
def __init__(self, width):
super().__init__()
self.p1 = nn.Parameter(torch.randn(1, width, 1))
self.p2 = nn.Parameter(torch.randn(1, width, 1))
self.beta = nn.Parameter(torch.ones(1, width, 1))
def forward(self, x):
return (self.p1 * x - self.p2 * x) * torch.sigmoid(self.beta * (self.p1 * x - self.p2 * x)) + self.p2 * x
class MetaAconC(nn.Module):
r""" ACON activation (activate or not).
# MetaAconC: (p1*x-p2*x) * sigmoid(beta*(p1*x-p2*x)) + p2*x, beta is generated by a small network
# according to "Activate or Not: Learning Customized Activation" <https://arxiv.org/pdf/2009.04759.pdf>.
"""
def __init__(self, width, r=16):
super().__init__()
self.fc1 = nn.Conv1d(width, max(r, width // r), kernel_size=1, stride=1, bias=True)
self.bn1 = nn.BatchNorm1d(max(r, width // r), track_running_stats=True)
self.fc2 = nn.Conv1d(max(r, width // r), width, kernel_size=1, stride=1, bias=True)
self.bn2 = nn.BatchNorm1d(width, track_running_stats=True)
self.p1 = nn.Parameter(torch.randn(1, width, 1))
self.p2 = nn.Parameter(torch.randn(1, width, 1))
def forward(self, x):
beta = torch.sigmoid(self.bn2(self.fc2(self.bn1(self.fc1(x.mean(dim=2, keepdims=True))))))
return (self.p1 * x - self.p2 * x) * torch.sigmoid(beta * (self.p1 * x - self.p2 * x)) + self.p2 * x