-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathgradcam-keras 2.py
180 lines (153 loc) · 5.96 KB
/
gradcam-keras 2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import numpy as np
import tensorflow as tf
import keras.backend as K
from keras.models import Model
from keras.layers.core import Lambda
def target_category_loss(x, category_index, nb_classes):
return tf.multiply(x, K.one_hot([category_index], nb_classes))
def target_category_loss_output_shape(input_shape):
return input_shape
def normalize(x):
# utility function to normalize a tensor by its L2 norm
return x / (K.sqrt(K.mean(K.square(x))) + 1e-5)
def resize_1d(array, shape):
res = np.zeros(shape)
if array.shape[0] >= shape:
ratio = array.shape[0]/shape
for i in range(array.shape[0]):
res[int(i/ratio)] += array[i]*(1-(i/ratio-int(i/ratio)))
if int(i/ratio) != shape-1:
res[int(i/ratio)+1] += array[i]*(i/ratio-int(i/ratio))
else:
res[int(i/ratio)] += array[i]*(i/ratio-int(i/ratio))
res = res[::-1]
array = array[::-1]
for i in range(array.shape[0]):
res[int(i/ratio)] += array[i]*(1-(i/ratio-int(i/ratio)))
if int(i/ratio) != shape-1:
res[int(i/ratio)+1] += array[i]*(i/ratio-int(i/ratio))
else:
res[int(i/ratio)] += array[i]*(i/ratio-int(i/ratio))
res = res[::-1]/(2*ratio)
array = array[::-1]
else:
ratio = shape/array.shape[0]
left = 0
right = 1
for i in range(shape):
if left < int(i/ratio):
left += 1
right += 1
if right > array.shape[0]-1:
res[i] += array[left]
else:
res[i] += array[right] * \
(i - left * ratio)/ratio+array[left]*(right*ratio-i)/ratio
res = res[::-1]
array = array[::-1]
left = 0
right = 1
for i in range(shape):
if left < int(i/ratio):
left += 1
right += 1
if right > array.shape[0]-1:
res[i] += array[left]
else:
res[i] += array[right] * \
(i - left * ratio)/ratio+array[left]*(right*ratio-i)/ratio
res = res[::-1]/2
array = array[::-1]
return res
def register_gradient():
if "GuidedBackProp" not in ops._gradient_registry._registry:
@ops.RegisterGradient("GuidedBackProp")
def _GuidedBackProp(op, grad):
dtype = op.inputs[0].dtype
return grad * tf.cast(grad > 0., dtype) * \
tf.cast(op.inputs[0] > 0., dtype)
def compile_saliency_function(model, activation_layer='block5_conv3'):
input_img = model.input
layer_dict = dict([(layer.name, layer) for layer in model.layers[1:]])
layer_output = layer_dict[activation_layer].output
max_output = K.max(layer_output, axis=3)
saliency = K.gradients(K.sum(max_output), input_img)[0]
return K.function([input_img, K.learning_phase()], [saliency])
def modify_backprop(model, name):
g = tf.get_default_graph()
with g.gradient_override_map({'Relu': name}):
# get layers that have an activation
layer_dict = [layer for layer in model.layers[1:]
if hasattr(layer, 'activation')]
# replace relu activation
for layer in layer_dict:
if layer.activation == keras.activations.relu:
layer.activation = tf.nn.relu
# re-instanciate a new model
new_model = VGG16(weights='imagenet')
return new_model
def deprocess_image(x):
'''
Same normalization as in:
https://github.com/fchollet/keras/blob/master/examples/conv_filter_visualization.py
'''
if np.ndim(x) > 3:
x = np.squeeze(x)
# normalize tensor: center on 0., ensure std is 0.1
x -= x.mean()
x /= (x.std() + 1e-5)
x *= 0.1
# clip to [0, 1]
x += 0.5
x = np.clip(x, 0, 1)
# convert to RGB array
x *= 255
if K.image_dim_ordering() == 'th':
x = x.transpose((1, 2, 0))
x = np.clip(x, 0, 255).astype('uint8')
return x
def grad_cam(input_model, data, category_index, layer_name, nb_classes):
#def target_layer(x):
#return target_category_loss(x, category_index, nb_classes)
target_layer = lambda x: target_category_loss(x, category_index, nb_classes)
x = input_model.layers[-1].output
x = Lambda(target_layer, output_shape=target_category_loss_output_shape)(x)
model = Model(input_model.layers[0].input, x)
loss = K.sum(model.layers[-1].output)
conv_output = [l for l in model.layers if l.name is layer_name][0].output
grads = normalize(K.gradients(loss, conv_output)[0])
gradient_function = K.function(
[model.layers[0].input], [conv_output, grads])
output, grads_val = gradient_function([data])
output, grads_val = output[0, :], grads_val[0, :, :]
weights = np.mean(grads_val, axis=(0))
cam = np.ones(output.shape[0: 1], dtype=np.float32)
for i, w in enumerate(weights):
cam += w * output[:, i]
#
# cam = cv2.resize(cam, (224, 224))
# cam = np.maximum(cam, 0)
# heatmap = cam / np.max(cam)
#
#
#
# # Return to BGR [0..255] from the preprocessed image
# image = image[0, :]
# image -= np.min(image)
# image = np.minimum(image, 255)
#
# cam = cv2.applyColorMap(np.uint8(255 * heatmap), cv2.COLORMAP_JET)
# cam = np.float32(cam) + np.float32(image)
# cam = 255 * cam / np.max(cam)
# cam = np.ones(output.shape[0: 1], dtype=np.float32)
# for i, w in enumerate(weights):
# cam += w * output[:, i]
cam = output.dot(weights)
print(cam.shape,'cam')
# print(cam)
cam = resize_1d(cam, (data.shape[1]))
cam = np.maximum(cam, 0)
# heatmap = cam / np.max(cam)
print(cam.shape,'cam')
heatmap = (cam - np.min(cam))/(np.max(cam) - np.min(cam)+1e-10)
return heatmap