This repository has been archived by the owner on Aug 19, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathcrypto.go
226 lines (206 loc) · 6.88 KB
/
crypto.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
package libp2ptls
import (
"crypto/ecdsa"
"crypto/elliptic"
"crypto/rand"
"crypto/tls"
"crypto/x509"
"crypto/x509/pkix"
"encoding/asn1"
"errors"
"fmt"
"math/big"
"time"
"golang.org/x/sys/cpu"
ic "github.com/libp2p/go-libp2p-core/crypto"
"github.com/libp2p/go-libp2p-core/peer"
)
const certValidityPeriod = 100 * 365 * 24 * time.Hour // ~100 years
const certificatePrefix = "libp2p-tls-handshake:"
const alpn string = "libp2p"
var extensionID = getPrefixedExtensionID([]int{1, 1})
type signedKey struct {
PubKey []byte
Signature []byte
}
// Identity is used to secure connections
type Identity struct {
config tls.Config
}
// NewIdentity creates a new identity
func NewIdentity(privKey ic.PrivKey) (*Identity, error) {
cert, err := keyToCertificate(privKey)
if err != nil {
return nil, err
}
return &Identity{
config: tls.Config{
MinVersion: tls.VersionTLS13,
PreferServerCipherSuites: preferServerCipherSuites(),
InsecureSkipVerify: true, // This is not insecure here. We will verify the cert chain ourselves.
ClientAuth: tls.RequireAnyClientCert,
Certificates: []tls.Certificate{*cert},
VerifyPeerCertificate: func(_ [][]byte, _ [][]*x509.Certificate) error {
panic("tls config not specialized for peer")
},
NextProtos: []string{alpn},
SessionTicketsDisabled: true,
},
}, nil
}
// ConfigForAny is a short-hand for ConfigForPeer("").
func (i *Identity) ConfigForAny() (*tls.Config, <-chan ic.PubKey) {
return i.ConfigForPeer("")
}
// ConfigForPeer creates a new single-use tls.Config that verifies the peer's
// certificate chain and returns the peer's public key via the channel. If the
// peer ID is empty, the returned config will accept any peer.
//
// It should be used to create a new tls.Config before securing either an
// incoming or outgoing connection.
func (i *Identity) ConfigForPeer(remote peer.ID) (*tls.Config, <-chan ic.PubKey) {
keyCh := make(chan ic.PubKey, 1)
// We need to check the peer ID in the VerifyPeerCertificate callback.
// The tls.Config it is also used for listening, and we might also have concurrent dials.
// Clone it so we can check for the specific peer ID we're dialing here.
conf := i.config.Clone()
// We're using InsecureSkipVerify, so the verifiedChains parameter will always be empty.
// We need to parse the certificates ourselves from the raw certs.
conf.VerifyPeerCertificate = func(rawCerts [][]byte, _ [][]*x509.Certificate) error {
defer close(keyCh)
chain := make([]*x509.Certificate, len(rawCerts))
for i := 0; i < len(rawCerts); i++ {
cert, err := x509.ParseCertificate(rawCerts[i])
if err != nil {
return err
}
chain[i] = cert
}
pubKey, err := PubKeyFromCertChain(chain)
if err != nil {
return err
}
if remote != "" && !remote.MatchesPublicKey(pubKey) {
peerID, err := peer.IDFromPublicKey(pubKey)
if err != nil {
peerID = peer.ID(fmt.Sprintf("(not determined: %s)", err.Error()))
}
return fmt.Errorf("peer IDs don't match: expected %s, got %s", remote, peerID)
}
keyCh <- pubKey
return nil
}
return conf, keyCh
}
// PubKeyFromCertChain verifies the certificate chain and extract the remote's public key.
func PubKeyFromCertChain(chain []*x509.Certificate) (ic.PubKey, error) {
if len(chain) != 1 {
return nil, errors.New("expected one certificates in the chain")
}
cert := chain[0]
pool := x509.NewCertPool()
pool.AddCert(cert)
if _, err := cert.Verify(x509.VerifyOptions{Roots: pool}); err != nil {
// If we return an x509 error here, it will be sent on the wire.
// Wrap the error to avoid that.
return nil, fmt.Errorf("certificate verification failed: %s", err)
}
var found bool
var keyExt pkix.Extension
// find the libp2p key extension, skipping all unknown extensions
for _, ext := range cert.Extensions {
if extensionIDEqual(ext.Id, extensionID) {
keyExt = ext
found = true
break
}
}
if !found {
return nil, errors.New("expected certificate to contain the key extension")
}
var sk signedKey
if _, err := asn1.Unmarshal(keyExt.Value, &sk); err != nil {
return nil, fmt.Errorf("unmarshalling signed certificate failed: %s", err)
}
pubKey, err := ic.UnmarshalPublicKey(sk.PubKey)
if err != nil {
return nil, fmt.Errorf("unmarshalling public key failed: %s", err)
}
certKeyPub, err := x509.MarshalPKIXPublicKey(cert.PublicKey)
if err != nil {
return nil, err
}
valid, err := pubKey.Verify(append([]byte(certificatePrefix), certKeyPub...), sk.Signature)
if err != nil {
return nil, fmt.Errorf("signature verification failed: %s", err)
}
if !valid {
return nil, errors.New("signature invalid")
}
return pubKey, nil
}
func keyToCertificate(sk ic.PrivKey) (*tls.Certificate, error) {
certKey, err := ecdsa.GenerateKey(elliptic.P256(), rand.Reader)
if err != nil {
return nil, err
}
keyBytes, err := ic.MarshalPublicKey(sk.GetPublic())
if err != nil {
return nil, err
}
certKeyPub, err := x509.MarshalPKIXPublicKey(certKey.Public())
if err != nil {
return nil, err
}
signature, err := sk.Sign(append([]byte(certificatePrefix), certKeyPub...))
if err != nil {
return nil, err
}
value, err := asn1.Marshal(signedKey{
PubKey: keyBytes,
Signature: signature,
})
if err != nil {
return nil, err
}
sn, err := rand.Int(rand.Reader, big.NewInt(1<<62))
if err != nil {
return nil, err
}
tmpl := &x509.Certificate{
SerialNumber: sn,
NotBefore: time.Time{},
NotAfter: time.Now().Add(certValidityPeriod),
// after calling CreateCertificate, these will end up in Certificate.Extensions
ExtraExtensions: []pkix.Extension{
{Id: extensionID, Value: value},
},
}
certDER, err := x509.CreateCertificate(rand.Reader, tmpl, tmpl, certKey.Public(), certKey)
if err != nil {
return nil, err
}
return &tls.Certificate{
Certificate: [][]byte{certDER},
PrivateKey: certKey,
}, nil
}
// We want nodes without AES hardware (e.g. ARM) support to always use ChaCha.
// Only if both nodes have AES hardware support (e.g. x86), AES should be used.
// x86->x86: AES, ARM->x86: ChaCha, x86->ARM: ChaCha and ARM->ARM: Chacha
// This function returns true if we don't have AES hardware support, and false otherwise.
// Thus, ARM servers will always use their own cipher suite preferences (ChaCha first),
// and x86 servers will aways use the client's cipher suite preferences.
func preferServerCipherSuites() bool {
// Copied from the Go TLS implementation.
// Check the cpu flags for each platform that has optimized GCM implementations.
// Worst case, these variables will just all be false.
var (
hasGCMAsmAMD64 = cpu.X86.HasAES && cpu.X86.HasPCLMULQDQ
hasGCMAsmARM64 = cpu.ARM64.HasAES && cpu.ARM64.HasPMULL
// Keep in sync with crypto/aes/cipher_s390x.go.
hasGCMAsmS390X = cpu.S390X.HasAES && cpu.S390X.HasAESCBC && cpu.S390X.HasAESCTR && (cpu.S390X.HasGHASH || cpu.S390X.HasAESGCM)
hasGCMAsm = hasGCMAsmAMD64 || hasGCMAsmARM64 || hasGCMAsmS390X
)
return !hasGCMAsm
}