Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Inference error on trained checkpoints #17

Open
richard-schwab opened this issue Mar 14, 2023 · 14 comments
Open

Inference error on trained checkpoints #17

richard-schwab opened this issue Mar 14, 2023 · 14 comments

Comments

@richard-schwab
Copy link

Hi,
I ran the training script as your instructions which worked very well thank you. However, I'm getting an error when attempting to use my newly trained weights.

I changed the line of infer.py as such:

checkpoint_path = os.path.join("trained_checkpoint", "cloth_segm_u2net_latest.pth")
to
checkpoint_path = "results/training_cloth_segm_u2net_exp1/checkpoints/itr_00100000_u2net.pth"

And I can see the file sizes of the checkpoints aren't the same:

original:
$ ls -al trained_checkpoint/cloth_segm_u2net_latest.pth
-rw-r--r-- 1 user user 176625341 Mar 12 21:23 trained_checkpoint/cloth_segm_u2net_latest.pth

newly trained:
$ ls -al results/training_cloth_segm_u2net_exp1/checkpoints/itr_00100000_u2net.pth
-rw-r--r-- 1 user user 176607205 Mar 14 09:09 results/training_cloth_segm_u2net_exp1/checkpoints/itr_00100000_u2net.pth

The error I'm getting seems to drop the stageX names from the layers in the state dict. Any ideas?

Traceback (most recent call last):
  File "/nas/nns/fashion_seg/cloth_segmentation/infer.py", line 60, in <module>
    net = load_checkpoint_mgpu(net, checkpoint_path)
  File "/nas/nns/fashion_seg/cloth_segmentation/utils/saving_utils.py", line 29, in load_checkpoint_mgpu
    model.load_state_dict(new_state_dict)
  File "/home/user/.local/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1671, in load_state_dict
    raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format(
RuntimeError: Error(s) in loading state_dict for U2NET:
	Missing key(s) in state_dict: "stage1.rebnconvin.conv_s1.weight", "stage1.rebnconvin.conv_s1.bias", "stage1.rebnconvin.bn_s1.weight", "stage1.rebnconvin.bn_s1.bias", "stage1.rebnconvin.bn_s1.running_mean", "stage1.rebnconvin.bn_s1.running_var", "stage1.rebnconv1.conv_s1.weight", "stage1.rebnconv1.conv_s1.bias", "stage1.rebnconv1.bn_s1.weight", "stage1.rebnconv1.bn_s1.bias", "stage1.rebnconv1.bn_s1.running_mean", "stage1.rebnconv1.bn_s1.running_var", "stage1.rebnconv2.conv_s1.weight", "stage1.rebnconv2.conv_s1.bias", "stage1.rebnconv2.bn_s1.weight", "stage1.rebnconv2.bn_s1.bias", "stage1.rebnconv2.bn_s1.running_mean", "stage1.rebnconv2.bn_s1.running_var", "stage1.rebnconv3.conv_s1.weight", "stage1.rebnconv3.conv_s1.bias", "stage1.rebnconv3.bn_s1.weight", "stage1.rebnconv3.bn_s1.bias", "stage1.rebnconv3.bn_s1.running_mean", "stage1.rebnconv3.bn_s1.running_var", "stage1.rebnconv4.conv_s1.weight", "stage1.rebnconv4.conv_s1.bias", "stage1.rebnconv4.bn_s1.weight", "stage1.rebnconv4.bn_s1.bias", "stage1.rebnconv4.bn_s1.running_mean", "stage1.rebnconv4.bn_s1.running_var", "stage1.rebnconv5.conv_s1.weight", "stage1.rebnconv5.conv_s1.bias", "stage1.rebnconv5.bn_s1.weight", "stage1.rebnconv5.bn_s1.bias", "stage1.rebnconv5.bn_s1.running_mean", "stage1.rebnconv5.bn_s1.running_var", "stage1.rebnconv6.conv_s1.weight", "stage1.rebnconv6.conv_s1.bias", "stage1.rebnconv6.bn_s1.weight", "stage1.rebnconv6.bn_s1.bias", "stage1.rebnconv6.bn_s1.running_mean", "stage1.rebnconv6.bn_s1.running_var", "stage1.rebnconv7.conv_s1.weight", "stage1.rebnconv7.conv_s1.bias", "stage1.rebnconv7.bn_s1.weight", "stage1.rebnconv7.bn_s1.bias", "stage1.rebnconv7.bn_s1.running_mean", "stage1.rebnconv7.bn_s1.running_var", "stage1.rebnconv6d.conv_s1.weight", "stage1.rebnconv6d.conv_s1.bias", "stage1.rebnconv6d.bn_s1.weight", "stage1.rebnconv6d.bn_s1.bias", "stage1.rebnconv6d.bn_s1.running_mean", "stage1.rebnconv6d.bn_s1.running_var", "stage1.rebnconv5d.conv_s1.weight", "stage1.rebnconv5d.conv_s1.bias", "stage1.rebnconv5d.bn_s1.weight", "stage1.rebnconv5d.bn_s1.bias", "stage1.rebnconv5d.bn_s1.running_mean", "stage1.rebnconv5d.bn_s1.running_var", "stage1.rebnconv4d.conv_s1.weight", "stage1.rebnconv4d.conv_s1.bias", "stage1.rebnconv4d.bn_s1.weight", "stage1.rebnconv4d.bn_s1.bias", "stage1.rebnconv4d.bn_s1.running_mean", "stage1.rebnconv4d.bn_s1.running_var", "stage1.rebnconv3d.conv_s1.weight", "stage1.rebnconv3d.conv_s1.bias", "stage1.rebnconv3d.bn_s1.weight", "stage1.rebnconv3d.bn_s1.bias", "stage1.rebnconv3d.bn_s1.running_mean", "stage1.rebnconv3d.bn_s1.running_var", "stage1.rebnconv2d.conv_s1.weight", "stage1.rebnconv2d.conv_s1.bias", "stage1.rebnconv2d.bn_s1.weight", "stage1.rebnconv2d.bn_s1.bias", "stage1.rebnconv2d.bn_s1.running_mean", "stage1.rebnconv2d.bn_s1.running_var", "stage1.rebnconv1d.conv_s1.weight", "stage1.rebnconv1d.conv_s1.bias", "stage1.rebnconv1d.bn_s1.weight", "stage1.rebnconv1d.bn_s1.bias", "stage1.rebnconv1d.bn_s1.running_mean", "stage1.rebnconv1d.bn_s1.running_var", "stage2.rebnconvin.conv_s1.weight", "stage2.rebnconvin.conv_s1.bias", "stage2.rebnconvin.bn_s1.weight", "stage2.rebnconvin.bn_s1.bias", "stage2.rebnconvin.bn_s1.running_mean", "stage2.rebnconvin.bn_s1.running_var", "stage2.rebnconv1.conv_s1.weight", "stage2.rebnconv1.conv_s1.bias", "stage2.rebnconv1.bn_s1.weight", "stage2.rebnconv1.bn_s1.bias", "stage2.rebnconv1.bn_s1.running_mean", "stage2.rebnconv1.bn_s1.running_var", "stage2.rebnconv2.conv_s1.weight", "stage2.rebnconv2.conv_s1.bias", "stage2.rebnconv2.bn_s1.weight", "stage2.rebnconv2.bn_s1.bias", "stage2.rebnconv2.bn_s1.running_mean", "stage2.rebnconv2.bn_s1.running_var", "stage2.rebnconv3.conv_s1.weight", "stage2.rebnconv3.conv_s1.bias", "stage2.rebnconv3.bn_s1.weight", "stage2.rebnconv3.bn_s1.bias", "stage2.rebnconv3.bn_s1.running_mean", "stage2.rebnconv3.bn_s1.running_var", "stage2.rebnconv4.conv_s1.weight", "stage2.rebnconv4.conv_s1.bias", "stage2.rebnconv4.bn_s1.weight", "stage2.rebnconv4.bn_s1.bias", "stage2.rebnconv4.bn_s1.running_mean", "stage2.rebnconv4.bn_s1.running_var", "stage2.rebnconv5.conv_s1.weight", "stage2.rebnconv5.conv_s1.bias", "stage2.rebnconv5.bn_s1.weight", "stage2.rebnconv5.bn_s1.bias", "stage2.rebnconv5.bn_s1.running_mean", "stage2.rebnconv5.bn_s1.running_var", "stage2.rebnconv6.conv_s1.weight", "stage2.rebnconv6.conv_s1.bias", "stage2.rebnconv6.bn_s1.weight", "stage2.rebnconv6.bn_s1.bias", "stage2.rebnconv6.bn_s1.running_mean", "stage2.rebnconv6.bn_s1.running_var", "stage2.rebnconv5d.conv_s1.weight", "stage2.rebnconv5d.conv_s1.bias", "stage2.rebnconv5d.bn_s1.weight", "stage2.rebnconv5d.bn_s1.bias", "stage2.rebnconv5d.bn_s1.running_mean", "stage2.rebnconv5d.bn_s1.running_var", "stage2.rebnconv4d.conv_s1.weight", "stage2.rebnconv4d.conv_s1.bias", "stage2.rebnconv4d.bn_s1.weight", "stage2.rebnconv4d.bn_s1.bias", "stage2.rebnconv4d.bn_s1.running_mean", "stage2.rebnconv4d.bn_s1.running_var", "stage2.rebnconv3d.conv_s1.weight", "stage2.rebnconv3d.conv_s1.bias", "stage2.rebnconv3d.bn_s1.weight", "stage2.rebnconv3d.bn_s1.bias", "stage2.rebnconv3d.bn_s1.running_mean", "stage2.rebnconv3d.bn_s1.running_var", "stage2.rebnconv2d.conv_s1.weight", "stage2.rebnconv2d.conv_s1.bias", "stage2.rebnconv2d.bn_s1.weight", "stage2.rebnconv2d.bn_s1.bias", "stage2.rebnconv2d.bn_s1.running_mean", "stage2.rebnconv2d.bn_s1.running_var", "stage2.rebnconv1d.conv_s1.weight", "stage2.rebnconv1d.conv_s1.bias", "stage2.rebnconv1d.bn_s1.weight", "stage2.rebnconv1d.bn_s1.bias", "stage2.rebnconv1d.bn_s1.running_mean", "stage2.rebnconv1d.bn_s1.running_var", "stage3.rebnconvin.conv_s1.weight", "stage3.rebnconvin.conv_s1.bias", "stage3.rebnconvin.bn_s1.weight", "stage3.rebnconvin.bn_s1.bias", "stage3.rebnconvin.bn_s1.running_mean", "stage3.rebnconvin.bn_s1.running_var", "stage3.rebnconv1.conv_s1.weight", "stage3.rebnconv1.conv_s1.bias", "stage3.rebnconv1.bn_s1.weight", "stage3.rebnconv1.bn_s1.bias", "stage3.rebnconv1.bn_s1.running_mean", "stage3.rebnconv1.bn_s1.running_var", "stage3.rebnconv2.conv_s1.weight", "stage3.rebnconv2.conv_s1.bias", "stage3.rebnconv2.bn_s1.weight", "stage3.rebnconv2.bn_s1.bias", "stage3.rebnconv2.bn_s1.running_mean", "stage3.rebnconv2.bn_s1.running_var", "stage3.rebnconv3.conv_s1.weight", "stage3.rebnconv3.conv_s1.bias", "stage3.rebnconv3.bn_s1.weight", "stage3.rebnconv3.bn_s1.bias", "stage3.rebnconv3.bn_s1.running_mean", "stage3.rebnconv3.bn_s1.running_var", "stage3.rebnconv4.conv_s1.weight", "stage3.rebnconv4.conv_s1.bias", "stage3.rebnconv4.bn_s1.weight", "stage3.rebnconv4.bn_s1.bias", "stage3.rebnconv4.bn_s1.running_mean", "stage3.rebnconv4.bn_s1.running_var", "stage3.rebnconv5.conv_s1.weight", "stage3.rebnconv5.conv_s1.bias", "stage3.rebnconv5.bn_s1.weight", "stage3.rebnconv5.bn_s1.bias", "stage3.rebnconv5.bn_s1.running_mean", "stage3.rebnconv5.bn_s1.running_var", "stage3.rebnconv4d.conv_s1.weight", "stage3.rebnconv4d.conv_s1.bias", "stage3.rebnconv4d.bn_s1.weight", "stage3.rebnconv4d.bn_s1.bias", "stage3.rebnconv4d.bn_s1.running_mean", "stage3.rebnconv4d.bn_s1.running_var", "stage3.rebnconv3d.conv_s1.weight", "stage3.rebnconv3d.conv_s1.bias", "stage3.rebnconv3d.bn_s1.weight", "stage3.rebnconv3d.bn_s1.bias", "stage3.rebnconv3d.bn_s1.running_mean", "stage3.rebnconv3d.bn_s1.running_var", "stage3.rebnconv2d.conv_s1.weight", "stage3.rebnconv2d.conv_s1.bias", "stage3.rebnconv2d.bn_s1.weight", "stage3.rebnconv2d.bn_s1.bias", "stage3.rebnconv2d.bn_s1.running_mean", "stage3.rebnconv2d.bn_s1.running_var", "stage3.rebnconv1d.conv_s1.weight", "stage3.rebnconv1d.conv_s1.bias", "stage3.rebnconv1d.bn_s1.weight", "stage3.rebnconv1d.bn_s1.bias", "stage3.rebnconv1d.bn_s1.running_mean", "stage3.rebnconv1d.bn_s1.running_var", "stage4.rebnconvin.conv_s1.weight", "stage4.rebnconvin.conv_s1.bias", "stage4.rebnconvin.bn_s1.weight", "stage4.rebnconvin.bn_s1.bias", "stage4.rebnconvin.bn_s1.running_mean", "stage4.rebnconvin.bn_s1.running_var", "stage4.rebnconv1.conv_s1.weight", "stage4.rebnconv1.conv_s1.bias", "stage4.rebnconv1.bn_s1.weight", "stage4.rebnconv1.bn_s1.bias", "stage4.rebnconv1.bn_s1.running_mean", "stage4.rebnconv1.bn_s1.running_var", "stage4.rebnconv2.conv_s1.weight", "stage4.rebnconv2.conv_s1.bias", "stage4.rebnconv2.bn_s1.weight", "stage4.rebnconv2.bn_s1.bias", "stage4.rebnconv2.bn_s1.running_mean", "stage4.rebnconv2.bn_s1.running_var", "stage4.rebnconv3.conv_s1.weight", "stage4.rebnconv3.conv_s1.bias", "stage4.rebnconv3.bn_s1.weight", "stage4.rebnconv3.bn_s1.bias", "stage4.rebnconv3.bn_s1.running_mean", "stage4.rebnconv3.bn_s1.running_var", "stage4.rebnconv4.conv_s1.weight", "stage4.rebnconv4.conv_s1.bias", "stage4.rebnconv4.bn_s1.weight", "stage4.rebnconv4.bn_s1.bias", "stage4.rebnconv4.bn_s1.running_mean", "stage4.rebnconv4.bn_s1.running_var", "stage4.rebnconv3d.conv_s1.weight", "stage4.rebnconv3d.conv_s1.bias", "stage4.rebnconv3d.bn_s1.weight", "stage4.rebnconv3d.bn_s1.bias", "stage4.rebnconv3d.bn_s1.running_mean", "stage4.rebnconv3d.bn_s1.running_var", "stage4.rebnconv2d.conv_s1.weight", "stage4.rebnconv2d.conv_s1.bias", "stage4.rebnconv2d.bn_s1.weight", "stage4.rebnconv2d.bn_s1.bias", "stage4.rebnconv2d.bn_s1.running_mean", "stage4.rebnconv2d.bn_s1.running_var", "stage4.rebnconv1d.conv_s1.weight", "stage4.rebnconv1d.conv_s1.bias", "stage4.rebnconv1d.bn_s1.weight", "stage4.rebnconv1d.bn_s1.bias", "stage4.rebnconv1d.bn_s1.running_mean", "stage4.rebnconv1d.bn_s1.running_var", "stage5.rebnconvin.conv_s1.weight", "stage5.rebnconvin.conv_s1.bias", "stage5.rebnconvin.bn_s1.weight", "stage5.rebnconvin.bn_s1.bias", "stage5.rebnconvin.bn_s1.running_mean", "stage5.rebnconvin.bn_s1.running_var", "stage5.rebnconv1.conv_s1.weight", "stage5.rebnconv1.conv_s1.bias", "stage5.rebnconv1.bn_s1.weight", "stage5.rebnconv1.bn_s1.bias", "stage5.rebnconv1.bn_s1.running_mean", "stage5.rebnconv1.bn_s1.running_var", "stage5.rebnconv2.conv_s1.weight", "stage5.rebnconv2.conv_s1.bias", "stage5.rebnconv2.bn_s1.weight", "stage5.rebnconv2.bn_s1.bias", "stage5.rebnconv2.bn_s1.running_mean", "stage5.rebnconv2.bn_s1.running_var", "stage5.rebnconv3.conv_s1.weight", "stage5.rebnconv3.conv_s1.bias", "stage5.rebnconv3.bn_s1.weight", "stage5.rebnconv3.bn_s1.bias", "stage5.rebnconv3.bn_s1.running_mean", "stage5.rebnconv3.bn_s1.running_var", "stage5.rebnconv4.conv_s1.weight", "stage5.rebnconv4.conv_s1.bias", "stage5.rebnconv4.bn_s1.weight", "stage5.rebnconv4.bn_s1.bias", "stage5.rebnconv4.bn_s1.running_mean", "stage5.rebnconv4.bn_s1.running_var", "stage5.rebnconv3d.conv_s1.weight", "stage5.rebnconv3d.conv_s1.bias", "stage5.rebnconv3d.bn_s1.weight", "stage5.rebnconv3d.bn_s1.bias", "stage5.rebnconv3d.bn_s1.running_mean", "stage5.rebnconv3d.bn_s1.running_var", "stage5.rebnconv2d.conv_s1.weight", "stage5.rebnconv2d.conv_s1.bias", "stage5.rebnconv2d.bn_s1.weight", "stage5.rebnconv2d.bn_s1.bias", "stage5.rebnconv2d.bn_s1.running_mean", "stage5.rebnconv2d.bn_s1.running_var", "stage5.rebnconv1d.conv_s1.weight", "stage5.rebnconv1d.conv_s1.bias", "stage5.rebnconv1d.bn_s1.weight", "stage5.rebnconv1d.bn_s1.bias", "stage5.rebnconv1d.bn_s1.running_mean", "stage5.rebnconv1d.bn_s1.running_var", "stage6.rebnconvin.conv_s1.weight", "stage6.rebnconvin.conv_s1.bias", "stage6.rebnconvin.bn_s1.weight", "stage6.rebnconvin.bn_s1.bias", "stage6.rebnconvin.bn_s1.running_mean", "stage6.rebnconvin.bn_s1.running_var", "stage6.rebnconv1.conv_s1.weight", "stage6.rebnconv1.conv_s1.bias", "stage6.rebnconv1.bn_s1.weight", "stage6.rebnconv1.bn_s1.bias", "stage6.rebnconv1.bn_s1.running_mean", "stage6.rebnconv1.bn_s1.running_var", "stage6.rebnconv2.conv_s1.weight", "stage6.rebnconv2.conv_s1.bias", "stage6.rebnconv2.bn_s1.weight", "stage6.rebnconv2.bn_s1.bias", "stage6.rebnconv2.bn_s1.running_mean", "stage6.rebnconv2.bn_s1.running_var", "stage6.rebnconv3.conv_s1.weight", "stage6.rebnconv3.conv_s1.bias", "stage6.rebnconv3.bn_s1.weight", "stage6.rebnconv3.bn_s1.bias", "stage6.rebnconv3.bn_s1.running_mean", "stage6.rebnconv3.bn_s1.running_var", "stage6.rebnconv4.conv_s1.weight", "stage6.rebnconv4.conv_s1.bias", "stage6.rebnconv4.bn_s1.weight", "stage6.rebnconv4.bn_s1.bias", "stage6.rebnconv4.bn_s1.running_mean", "stage6.rebnconv4.bn_s1.running_var", "stage6.rebnconv3d.conv_s1.weight", "stage6.rebnconv3d.conv_s1.bias", "stage6.rebnconv3d.bn_s1.weight", "stage6.rebnconv3d.bn_s1.bias", "stage6.rebnconv3d.bn_s1.running_mean", "stage6.rebnconv3d.bn_s1.running_var", "stage6.rebnconv2d.conv_s1.weight", "stage6.rebnconv2d.conv_s1.bias", "stage6.rebnconv2d.bn_s1.weight", "stage6.rebnconv2d.bn_s1.bias", "stage6.rebnconv2d.bn_s1.running_mean", "stage6.rebnconv2d.bn_s1.running_var", "stage6.rebnconv1d.conv_s1.weight", "stage6.rebnconv1d.conv_s1.bias", "stage6.rebnconv1d.bn_s1.weight", "stage6.rebnconv1d.bn_s1.bias", "stage6.rebnconv1d.bn_s1.running_mean", "stage6.rebnconv1d.bn_s1.running_var", "stage5d.rebnconvin.conv_s1.weight", "stage5d.rebnconvin.conv_s1.bias", "stage5d.rebnconvin.bn_s1.weight", "stage5d.rebnconvin.bn_s1.bias", "stage5d.rebnconvin.bn_s1.running_mean", "stage5d.rebnconvin.bn_s1.running_var", "stage5d.rebnconv1.conv_s1.weight", "stage5d.rebnconv1.conv_s1.bias", "stage5d.rebnconv1.bn_s1.weight", "stage5d.rebnconv1.bn_s1.bias", "stage5d.rebnconv1.bn_s1.running_mean", "stage5d.rebnconv1.bn_s1.running_var", "stage5d.rebnconv2.conv_s1.weight", "stage5d.rebnconv2.conv_s1.bias", "stage5d.rebnconv2.bn_s1.weight", "stage5d.rebnconv2.bn_s1.bias", "stage5d.rebnconv2.bn_s1.running_mean", "stage5d.rebnconv2.bn_s1.running_var", "stage5d.rebnconv3.conv_s1.weight", "stage5d.rebnconv3.conv_s1.bias", "stage5d.rebnconv3.bn_s1.weight", "stage5d.rebnconv3.bn_s1.bias", "stage5d.rebnconv3.bn_s1.running_mean", "stage5d.rebnconv3.bn_s1.running_var", "stage5d.rebnconv4.conv_s1.weight", "stage5d.rebnconv4.conv_s1.bias", "stage5d.rebnconv4.bn_s1.weight", "stage5d.rebnconv4.bn_s1.bias", "stage5d.rebnconv4.bn_s1.running_mean", "stage5d.rebnconv4.bn_s1.running_var", "stage5d.rebnconv3d.conv_s1.weight", "stage5d.rebnconv3d.conv_s1.bias", "stage5d.rebnconv3d.bn_s1.weight", "stage5d.rebnconv3d.bn_s1.bias", "stage5d.rebnconv3d.bn_s1.running_mean", "stage5d.rebnconv3d.bn_s1.running_var", "stage5d.rebnconv2d.conv_s1.weight", "stage5d.rebnconv2d.conv_s1.bias", "stage5d.rebnconv2d.bn_s1.weight", "stage5d.rebnconv2d.bn_s1.bias", "stage5d.rebnconv2d.bn_s1.running_mean", "stage5d.rebnconv2d.bn_s1.running_var", "stage5d.rebnconv1d.conv_s1.weight", "stage5d.rebnconv1d.conv_s1.bias", "stage5d.rebnconv1d.bn_s1.weight", "stage5d.rebnconv1d.bn_s1.bias", "stage5d.rebnconv1d.bn_s1.running_mean", "stage5d.rebnconv1d.bn_s1.running_var", "stage4d.rebnconvin.conv_s1.weight", "stage4d.rebnconvin.conv_s1.bias", "stage4d.rebnconvin.bn_s1.weight", "stage4d.rebnconvin.bn_s1.bias", "stage4d.rebnconvin.bn_s1.running_mean", "stage4d.rebnconvin.bn_s1.running_var", "stage4d.rebnconv1.conv_s1.weight", "stage4d.rebnconv1.conv_s1.bias", "stage4d.rebnconv1.bn_s1.weight", "stage4d.rebnconv1.bn_s1.bias", "stage4d.rebnconv1.bn_s1.running_mean", "stage4d.rebnconv1.bn_s1.running_var", "stage4d.rebnconv2.conv_s1.weight", "stage4d.rebnconv2.conv_s1.bias", "stage4d.rebnconv2.bn_s1.weight", "stage4d.rebnconv2.bn_s1.bias", "stage4d.rebnconv2.bn_s1.running_mean", "stage4d.rebnconv2.bn_s1.running_var", "stage4d.rebnconv3.conv_s1.weight", "stage4d.rebnconv3.conv_s1.bias", "stage4d.rebnconv3.bn_s1.weight", "stage4d.rebnconv3.bn_s1.bias", "stage4d.rebnconv3.bn_s1.running_mean", "stage4d.rebnconv3.bn_s1.running_var", "stage4d.rebnconv4.conv_s1.weight", "stage4d.rebnconv4.conv_s1.bias", "stage4d.rebnconv4.bn_s1.weight", "stage4d.rebnconv4.bn_s1.bias", "stage4d.rebnconv4.bn_s1.running_mean", "stage4d.rebnconv4.bn_s1.running_var", "stage4d.rebnconv3d.conv_s1.weight", "stage4d.rebnconv3d.conv_s1.bias", "stage4d.rebnconv3d.bn_s1.weight", "stage4d.rebnconv3d.bn_s1.bias", "stage4d.rebnconv3d.bn_s1.running_mean", "stage4d.rebnconv3d.bn_s1.running_var", "stage4d.rebnconv2d.conv_s1.weight", "stage4d.rebnconv2d.conv_s1.bias", "stage4d.rebnconv2d.bn_s1.weight", "stage4d.rebnconv2d.bn_s1.bias", "stage4d.rebnconv2d.bn_s1.running_mean", "stage4d.rebnconv2d.bn_s1.running_var", "stage4d.rebnconv1d.conv_s1.weight", "stage4d.rebnconv1d.conv_s1.bias", "stage4d.rebnconv1d.bn_s1.weight", "stage4d.rebnconv1d.bn_s1.bias", "stage4d.rebnconv1d.bn_s1.running_mean", "stage4d.rebnconv1d.bn_s1.running_var", "stage3d.rebnconvin.conv_s1.weight", "stage3d.rebnconvin.conv_s1.bias", "stage3d.rebnconvin.bn_s1.weight", "stage3d.rebnconvin.bn_s1.bias", "stage3d.rebnconvin.bn_s1.running_mean", "stage3d.rebnconvin.bn_s1.running_var", "stage3d.rebnconv1.conv_s1.weight", "stage3d.rebnconv1.conv_s1.bias", "stage3d.rebnconv1.bn_s1.weight", "stage3d.rebnconv1.bn_s1.bias", "stage3d.rebnconv1.bn_s1.running_mean", "stage3d.rebnconv1.bn_s1.running_var", "stage3d.rebnconv2.conv_s1.weight", "stage3d.rebnconv2.conv_s1.bias", "stage3d.rebnconv2.bn_s1.weight", "stage3d.rebnconv2.bn_s1.bias", "stage3d.rebnconv2.bn_s1.running_mean", "stage3d.rebnconv2.bn_s1.running_var", "stage3d.rebnconv3.conv_s1.weight", "stage3d.rebnconv3.conv_s1.bias", "stage3d.rebnconv3.bn_s1.weight", "stage3d.rebnconv3.bn_s1.bias", "stage3d.rebnconv3.bn_s1.running_mean", "stage3d.rebnconv3.bn_s1.running_var", "stage3d.rebnconv4.conv_s1.weight", "stage3d.rebnconv4.conv_s1.bias", "stage3d.rebnconv4.bn_s1.weight", "stage3d.rebnconv4.bn_s1.bias", "stage3d.rebnconv4.bn_s1.running_mean", "stage3d.rebnconv4.bn_s1.running_var", "stage3d.rebnconv5.conv_s1.weight", "stage3d.rebnconv5.conv_s1.bias", "stage3d.rebnconv5.bn_s1.weight", "stage3d.rebnconv5.bn_s1.bias", "stage3d.rebnconv5.bn_s1.running_mean", "stage3d.rebnconv5.bn_s1.running_var", "stage3d.rebnconv4d.conv_s1.weight", "stage3d.rebnconv4d.conv_s1.bias", "stage3d.rebnconv4d.bn_s1.weight", "stage3d.rebnconv4d.bn_s1.bias", "stage3d.rebnconv4d.bn_s1.running_mean", "stage3d.rebnconv4d.bn_s1.running_var", "stage3d.rebnconv3d.conv_s1.weight", "stage3d.rebnconv3d.conv_s1.bias", "stage3d.rebnconv3d.bn_s1.weight", "stage3d.rebnconv3d.bn_s1.bias", "stage3d.rebnconv3d.bn_s1.running_mean", "stage3d.rebnconv3d.bn_s1.running_var", "stage3d.rebnconv2d.conv_s1.weight", "stage3d.rebnconv2d.conv_s1.bias", "stage3d.rebnconv2d.bn_s1.weight", "stage3d.rebnconv2d.bn_s1.bias", "stage3d.rebnconv2d.bn_s1.running_mean", "stage3d.rebnconv2d.bn_s1.running_var", "stage3d.rebnconv1d.conv_s1.weight", "stage3d.rebnconv1d.conv_s1.bias", "stage3d.rebnconv1d.bn_s1.weight", "stage3d.rebnconv1d.bn_s1.bias", "stage3d.rebnconv1d.bn_s1.running_mean", "stage3d.rebnconv1d.bn_s1.running_var", "stage2d.rebnconvin.conv_s1.weight", "stage2d.rebnconvin.conv_s1.bias", "stage2d.rebnconvin.bn_s1.weight", "stage2d.rebnconvin.bn_s1.bias", "stage2d.rebnconvin.bn_s1.running_mean", "stage2d.rebnconvin.bn_s1.running_var", "stage2d.rebnconv1.conv_s1.weight", "stage2d.rebnconv1.conv_s1.bias", "stage2d.rebnconv1.bn_s1.weight", "stage2d.rebnconv1.bn_s1.bias", "stage2d.rebnconv1.bn_s1.running_mean", "stage2d.rebnconv1.bn_s1.running_var", "stage2d.rebnconv2.conv_s1.weight", "stage2d.rebnconv2.conv_s1.bias", "stage2d.rebnconv2.bn_s1.weight", "stage2d.rebnconv2.bn_s1.bias", "stage2d.rebnconv2.bn_s1.running_mean", "stage2d.rebnconv2.bn_s1.running_var", "stage2d.rebnconv3.conv_s1.weight", "stage2d.rebnconv3.conv_s1.bias", "stage2d.rebnconv3.bn_s1.weight", "stage2d.rebnconv3.bn_s1.bias", "stage2d.rebnconv3.bn_s1.running_mean", "stage2d.rebnconv3.bn_s1.running_var", "stage2d.rebnconv4.conv_s1.weight", "stage2d.rebnconv4.conv_s1.bias", "stage2d.rebnconv4.bn_s1.weight", "stage2d.rebnconv4.bn_s1.bias", "stage2d.rebnconv4.bn_s1.running_mean", "stage2d.rebnconv4.bn_s1.running_var", "stage2d.rebnconv5.conv_s1.weight", "stage2d.rebnconv5.conv_s1.bias", "stage2d.rebnconv5.bn_s1.weight", "stage2d.rebnconv5.bn_s1.bias", "stage2d.rebnconv5.bn_s1.running_mean", "stage2d.rebnconv5.bn_s1.running_var", "stage2d.rebnconv6.conv_s1.weight", "stage2d.rebnconv6.conv_s1.bias", "stage2d.rebnconv6.bn_s1.weight", "stage2d.rebnconv6.bn_s1.bias", "stage2d.rebnconv6.bn_s1.running_mean", "stage2d.rebnconv6.bn_s1.running_var", "stage2d.rebnconv5d.conv_s1.weight", "stage2d.rebnconv5d.conv_s1.bias", "stage2d.rebnconv5d.bn_s1.weight", "stage2d.rebnconv5d.bn_s1.bias", "stage2d.rebnconv5d.bn_s1.running_mean", "stage2d.rebnconv5d.bn_s1.running_var", "stage2d.rebnconv4d.conv_s1.weight", "stage2d.rebnconv4d.conv_s1.bias", "stage2d.rebnconv4d.bn_s1.weight", "stage2d.rebnconv4d.bn_s1.bias", "stage2d.rebnconv4d.bn_s1.running_mean", "stage2d.rebnconv4d.bn_s1.running_var", "stage2d.rebnconv3d.conv_s1.weight", "stage2d.rebnconv3d.conv_s1.bias", "stage2d.rebnconv3d.bn_s1.weight", "stage2d.rebnconv3d.bn_s1.bias", "stage2d.rebnconv3d.bn_s1.running_mean", "stage2d.rebnconv3d.bn_s1.running_var", "stage2d.rebnconv2d.conv_s1.weight", "stage2d.rebnconv2d.conv_s1.bias", "stage2d.rebnconv2d.bn_s1.weight", "stage2d.rebnconv2d.bn_s1.bias", "stage2d.rebnconv2d.bn_s1.running_mean", "stage2d.rebnconv2d.bn_s1.running_var", "stage2d.rebnconv1d.conv_s1.weight", "stage2d.rebnconv1d.conv_s1.bias", "stage2d.rebnconv1d.bn_s1.weight", "stage2d.rebnconv1d.bn_s1.bias", "stage2d.rebnconv1d.bn_s1.running_mean", "stage2d.rebnconv1d.bn_s1.running_var", "stage1d.rebnconvin.conv_s1.weight", "stage1d.rebnconvin.conv_s1.bias", "stage1d.rebnconvin.bn_s1.weight", "stage1d.rebnconvin.bn_s1.bias", "stage1d.rebnconvin.bn_s1.running_mean", "stage1d.rebnconvin.bn_s1.running_var", "stage1d.rebnconv1.conv_s1.weight", "stage1d.rebnconv1.conv_s1.bias", "stage1d.rebnconv1.bn_s1.weight", "stage1d.rebnconv1.bn_s1.bias", "stage1d.rebnconv1.bn_s1.running_mean", "stage1d.rebnconv1.bn_s1.running_var", "stage1d.rebnconv2.conv_s1.weight", "stage1d.rebnconv2.conv_s1.bias", "stage1d.rebnconv2.bn_s1.weight", "stage1d.rebnconv2.bn_s1.bias", "stage1d.rebnconv2.bn_s1.running_mean", "stage1d.rebnconv2.bn_s1.running_var", "stage1d.rebnconv3.conv_s1.weight", "stage1d.rebnconv3.conv_s1.bias", "stage1d.rebnconv3.bn_s1.weight", "stage1d.rebnconv3.bn_s1.bias", "stage1d.rebnconv3.bn_s1.running_mean", "stage1d.rebnconv3.bn_s1.running_var", "stage1d.rebnconv4.conv_s1.weight", "stage1d.rebnconv4.conv_s1.bias", "stage1d.rebnconv4.bn_s1.weight", "stage1d.rebnconv4.bn_s1.bias", "stage1d.rebnconv4.bn_s1.running_mean", "stage1d.rebnconv4.bn_s1.running_var", "stage1d.rebnconv5.conv_s1.weight", "stage1d.rebnconv5.conv_s1.bias", "stage1d.rebnconv5.bn_s1.weight", "stage1d.rebnconv5.bn_s1.bias", "stage1d.rebnconv5.bn_s1.running_mean", "stage1d.rebnconv5.bn_s1.running_var", "stage1d.rebnconv6.conv_s1.weight", "stage1d.rebnconv6.conv_s1.bias", "stage1d.rebnconv6.bn_s1.weight", "stage1d.rebnconv6.bn_s1.bias", "stage1d.rebnconv6.bn_s1.running_mean", "stage1d.rebnconv6.bn_s1.running_var", "stage1d.rebnconv7.conv_s1.weight", "stage1d.rebnconv7.conv_s1.bias", "stage1d.rebnconv7.bn_s1.weight", "stage1d.rebnconv7.bn_s1.bias", "stage1d.rebnconv7.bn_s1.running_mean", "stage1d.rebnconv7.bn_s1.running_var", "stage1d.rebnconv6d.conv_s1.weight", "stage1d.rebnconv6d.conv_s1.bias", "stage1d.rebnconv6d.bn_s1.weight", "stage1d.rebnconv6d.bn_s1.bias", "stage1d.rebnconv6d.bn_s1.running_mean", "stage1d.rebnconv6d.bn_s1.running_var", "stage1d.rebnconv5d.conv_s1.weight", "stage1d.rebnconv5d.conv_s1.bias", "stage1d.rebnconv5d.bn_s1.weight", "stage1d.rebnconv5d.bn_s1.bias", "stage1d.rebnconv5d.bn_s1.running_mean", "stage1d.rebnconv5d.bn_s1.running_var", "stage1d.rebnconv4d.conv_s1.weight", "stage1d.rebnconv4d.conv_s1.bias", "stage1d.rebnconv4d.bn_s1.weight", "stage1d.rebnconv4d.bn_s1.bias", "stage1d.rebnconv4d.bn_s1.running_mean", "stage1d.rebnconv4d.bn_s1.running_var", "stage1d.rebnconv3d.conv_s1.weight", "stage1d.rebnconv3d.conv_s1.bias", "stage1d.rebnconv3d.bn_s1.weight", "stage1d.rebnconv3d.bn_s1.bias", "stage1d.rebnconv3d.bn_s1.running_mean", "stage1d.rebnconv3d.bn_s1.running_var", "stage1d.rebnconv2d.conv_s1.weight", "stage1d.rebnconv2d.conv_s1.bias", "stage1d.rebnconv2d.bn_s1.weight", "stage1d.rebnconv2d.bn_s1.bias", "stage1d.rebnconv2d.bn_s1.running_mean", "stage1d.rebnconv2d.bn_s1.running_var", "stage1d.rebnconv1d.conv_s1.weight", "stage1d.rebnconv1d.conv_s1.bias", "stage1d.rebnconv1d.bn_s1.weight", "stage1d.rebnconv1d.bn_s1.bias", "stage1d.rebnconv1d.bn_s1.running_mean", "stage1d.rebnconv1d.bn_s1.running_var", "side1.weight", "side1.bias", "side2.weight", "side2.bias", "side3.weight", "side3.bias", "side4.weight", "side4.bias", "side5.weight", "side5.bias", "side6.weight", "side6.bias", "outconv.weight", "outconv.bias". 
	Unexpected key(s) in state_dict: "rebnconvin.conv_s1.weight", "rebnconvin.conv_s1.bias", "rebnconvin.bn_s1.weight", "rebnconvin.bn_s1.bias", "rebnconvin.bn_s1.running_mean", "rebnconvin.bn_s1.running_var", "rebnconvin.bn_s1.num_batches_tracked", "rebnconv1.conv_s1.weight", "rebnconv1.conv_s1.bias", "rebnconv1.bn_s1.weight", "rebnconv1.bn_s1.bias", "rebnconv1.bn_s1.running_mean", "rebnconv1.bn_s1.running_var", "rebnconv1.bn_s1.num_batches_tracked", "rebnconv2.conv_s1.weight", "rebnconv2.conv_s1.bias", "rebnconv2.bn_s1.weight", "rebnconv2.bn_s1.bias", "rebnconv2.bn_s1.running_mean", "rebnconv2.bn_s1.running_var", "rebnconv2.bn_s1.num_batches_tracked", "rebnconv3.conv_s1.weight", "rebnconv3.conv_s1.bias", "rebnconv3.bn_s1.weight", "rebnconv3.bn_s1.bias", "rebnconv3.bn_s1.running_mean", "rebnconv3.bn_s1.running_var", "rebnconv3.bn_s1.num_batches_tracked", "rebnconv4.conv_s1.weight", "rebnconv4.conv_s1.bias", "rebnconv4.bn_s1.weight", "rebnconv4.bn_s1.bias", "rebnconv4.bn_s1.running_mean", "rebnconv4.bn_s1.running_var", "rebnconv4.bn_s1.num_batches_tracked", "rebnconv5.conv_s1.weight", "rebnconv5.conv_s1.bias", "rebnconv5.bn_s1.weight", "rebnconv5.bn_s1.bias", "rebnconv5.bn_s1.running_mean", "rebnconv5.bn_s1.running_var", "rebnconv5.bn_s1.num_batches_tracked", "rebnconv6.conv_s1.weight", "rebnconv6.conv_s1.bias", "rebnconv6.bn_s1.weight", "rebnconv6.bn_s1.bias", "rebnconv6.bn_s1.running_mean", "rebnconv6.bn_s1.running_var", "rebnconv6.bn_s1.num_batches_tracked", "rebnconv7.conv_s1.weight", "rebnconv7.conv_s1.bias", "rebnconv7.bn_s1.weight", "rebnconv7.bn_s1.bias", "rebnconv7.bn_s1.running_mean", "rebnconv7.bn_s1.running_var", "rebnconv7.bn_s1.num_batches_tracked", "rebnconv6d.conv_s1.weight", "rebnconv6d.conv_s1.bias", "rebnconv6d.bn_s1.weight", "rebnconv6d.bn_s1.bias", "rebnconv6d.bn_s1.running_mean", "rebnconv6d.bn_s1.running_var", "rebnconv6d.bn_s1.num_batches_tracked", "rebnconv5d.conv_s1.weight", "rebnconv5d.conv_s1.bias", "rebnconv5d.bn_s1.weight", "rebnconv5d.bn_s1.bias", "rebnconv5d.bn_s1.running_mean", "rebnconv5d.bn_s1.running_var", "rebnconv5d.bn_s1.num_batches_tracked", "rebnconv4d.conv_s1.weight", "rebnconv4d.conv_s1.bias", "rebnconv4d.bn_s1.weight", "rebnconv4d.bn_s1.bias", "rebnconv4d.bn_s1.running_mean", "rebnconv4d.bn_s1.running_var", "rebnconv4d.bn_s1.num_batches_tracked", "rebnconv3d.conv_s1.weight", "rebnconv3d.conv_s1.bias", "rebnconv3d.bn_s1.weight", "rebnconv3d.bn_s1.bias", "rebnconv3d.bn_s1.running_mean", "rebnconv3d.bn_s1.running_var", "rebnconv3d.bn_s1.num_batches_tracked", "rebnconv2d.conv_s1.weight", "rebnconv2d.conv_s1.bias", "rebnconv2d.bn_s1.weight", "rebnconv2d.bn_s1.bias", "rebnconv2d.bn_s1.running_mean", "rebnconv2d.bn_s1.running_var", "rebnconv2d.bn_s1.num_batches_tracked", "rebnconv1d.conv_s1.weight", "rebnconv1d.conv_s1.bias", "rebnconv1d.bn_s1.weight", "rebnconv1d.bn_s1.bias", "rebnconv1d.bn_s1.running_mean", "rebnconv1d.bn_s1.running_var", "rebnconv1d.bn_s1.num_batches_tracked", ".rebnconvin.conv_s1.weight", ".rebnconvin.conv_s1.bias", ".rebnconvin.bn_s1.weight", ".rebnconvin.bn_s1.bias", ".rebnconvin.bn_s1.running_mean", ".rebnconvin.bn_s1.running_var", ".rebnconvin.bn_s1.num_batches_tracked", ".rebnconv1.conv_s1.weight", ".rebnconv1.conv_s1.bias", ".rebnconv1.bn_s1.weight", ".rebnconv1.bn_s1.bias", ".rebnconv1.bn_s1.running_mean", ".rebnconv1.bn_s1.running_var", ".rebnconv1.bn_s1.num_batches_tracked", ".rebnconv2.conv_s1.weight", ".rebnconv2.conv_s1.bias", ".rebnconv2.bn_s1.weight", ".rebnconv2.bn_s1.bias", ".rebnconv2.bn_s1.running_mean", ".rebnconv2.bn_s1.running_var", ".rebnconv2.bn_s1.num_batches_tracked", ".rebnconv3.conv_s1.weight", ".rebnconv3.conv_s1.bias", ".rebnconv3.bn_s1.weight", ".rebnconv3.bn_s1.bias", ".rebnconv3.bn_s1.running_mean", ".rebnconv3.bn_s1.running_var", ".rebnconv3.bn_s1.num_batches_tracked", ".rebnconv4.conv_s1.weight", ".rebnconv4.conv_s1.bias", ".rebnconv4.bn_s1.weight", ".rebnconv4.bn_s1.bias", ".rebnconv4.bn_s1.running_mean", ".rebnconv4.bn_s1.running_var", ".rebnconv4.bn_s1.num_batches_tracked", ".rebnconv3d.conv_s1.weight", ".rebnconv3d.conv_s1.bias", ".rebnconv3d.bn_s1.weight", ".rebnconv3d.bn_s1.bias", ".rebnconv3d.bn_s1.running_mean", ".rebnconv3d.bn_s1.running_var", ".rebnconv3d.bn_s1.num_batches_tracked", ".rebnconv2d.conv_s1.weight", ".rebnconv2d.conv_s1.bias", ".rebnconv2d.bn_s1.weight", ".rebnconv2d.bn_s1.bias", ".rebnconv2d.bn_s1.running_mean", ".rebnconv2d.bn_s1.running_var", ".rebnconv2d.bn_s1.num_batches_tracked", ".rebnconv1d.conv_s1.weight", ".rebnconv1d.conv_s1.bias", ".rebnconv1d.bn_s1.weight", ".rebnconv1d.bn_s1.bias", ".rebnconv1d.bn_s1.running_mean", ".rebnconv1d.bn_s1.running_var", ".rebnconv1d.bn_s1.num_batches_tracked", ".rebnconv5.conv_s1.weight", ".rebnconv5.conv_s1.bias", ".rebnconv5.bn_s1.weight", ".rebnconv5.bn_s1.bias", ".rebnconv5.bn_s1.running_mean", ".rebnconv5.bn_s1.running_var", ".rebnconv5.bn_s1.num_batches_tracked", ".rebnconv4d.conv_s1.weight", ".rebnconv4d.conv_s1.bias", ".rebnconv4d.bn_s1.weight", ".rebnconv4d.bn_s1.bias", ".rebnconv4d.bn_s1.running_mean", ".rebnconv4d.bn_s1.running_var", ".rebnconv4d.bn_s1.num_batches_tracked", ".rebnconv6.conv_s1.weight", ".rebnconv6.conv_s1.bias", ".rebnconv6.bn_s1.weight", ".rebnconv6.bn_s1.bias", ".rebnconv6.bn_s1.running_mean", ".rebnconv6.bn_s1.running_var", ".rebnconv6.bn_s1.num_batches_tracked", ".rebnconv5d.conv_s1.weight", ".rebnconv5d.conv_s1.bias", ".rebnconv5d.bn_s1.weight", ".rebnconv5d.bn_s1.bias", ".rebnconv5d.bn_s1.running_mean", ".rebnconv5d.bn_s1.running_var", ".rebnconv5d.bn_s1.num_batches_tracked", ".rebnconv7.conv_s1.weight", ".rebnconv7.conv_s1.bias", ".rebnconv7.bn_s1.weight", ".rebnconv7.bn_s1.bias", ".rebnconv7.bn_s1.running_mean", ".rebnconv7.bn_s1.running_var", ".rebnconv7.bn_s1.num_batches_tracked", ".rebnconv6d.conv_s1.weight", ".rebnconv6d.conv_s1.bias", ".rebnconv6d.bn_s1.weight", ".rebnconv6d.bn_s1.bias", ".rebnconv6d.bn_s1.running_mean", ".rebnconv6d.bn_s1.running_var", ".rebnconv6d.bn_s1.num_batches_tracked", "eight", "ias", ".weight", ".bias". 
@richard-schwab
Copy link
Author

Ok some improvement:

I changed line 29 on utils/saving_utils.py to:
model.load_state_dict(new_state_dict, strict=False)

And got the network to run. However, I am now only getting entirely green boxes, no correct masks. Prior to itr_00055000_u2net.pth, the images are largely what looks like canny edge detection with red lines. But by itr_00060000_u2net.pth they are all green boxes. Any suggestions based on your training process?

@yaomilwaukee
Copy link

hello
the link of pre-trained model download doesn't work, Did you download the pre-trained model file? if did, could you share it ?

@wildoctopus
Copy link

Hi @richard-schwab @yaomilwaukee

For pretrained model download with inference script for Alpha Image generation and Cloth segmentation, please check this
https://github.com/wildoctopus/huggingface-cloth-segmentation

Have cleaned, modified the scripts to run on latest pytorch and other libraries and Its very simple to use as well.
The script will automatically download the pretrained model. So no worry at all.

You guys can also check the live demo at huggingface - https://huggingface.co/spaces/wildoctopus/cloth-segmentation

If you guys like this, please drop a star to my repo.

Thanks :)

@danilchik22
Copy link

Hi @richard-schwab @yaomilwaukee

For pretrained model download with inference script for Alpha Image generation and Cloth segmentation, please check this https://github.com/wildoctopus/huggingface-cloth-segmentation

Have cleaned, modified the scripts to run on latest pytorch and other libraries and Its very simple to use as well. The script will automatically download the pretrained model. So no worry at all.

You guys can also check the live demo at huggingface - https://huggingface.co/spaces/wildoctopus/cloth-segmentation

If you guys like this, please drop a star to my repo.

Thanks :)

Thank yoy very much! You saved my life!)

@Antonytm
Copy link

I have exactly the same issue.
Pre-trained mode from Hugging Face works OK.
The model that is trained using instructions fails.

RuntimeError: Error(s) in loading state_dict for U2NET:
        Missing key(s) in state_dict: "stage1.rebnconvin.conv_s1.weight", "stage1.rebnconvin.conv_s1.bias", "stage1.rebnconvin.bn_s1.weight", "stage1.rebnconvin.bn_s1.bias", "stage1.rebnconvin.bn_s1.running_mean", "stage1.rebnconvin.bn_s1.running_var", "stage1.rebnconv1.conv_s1.weight", "stage1.rebnconv1.conv_s1.bias", "stage1.rebnconv1.bn_s1.weight", "stage1.rebnconv1.bn_s1.bias", "stage1.rebnconv1.bn_s1.running_mean", "stage1.rebnconv1.bn_s1.running_var", "stage1.rebnconv2.conv_s1.weight", "stage1.rebnconv2.conv_s1.bias", "stage1.rebnconv2.bn_s1.weight", "stage1.rebnconv2.bn_s1.bias", "stage1.rebnconv2.bn_s1.running_mean", "stage1.rebnconv2.bn_s1.running_var", "stage1.rebnconv3.conv_s1.weight", "stage1.rebnconv3.conv_s1.bias", "stage1.rebnconv3.bn_s1.weight", "stage1.rebnconv3.bn_s1.bias", "stage1.rebnconv3.bn_s1.running_mean", "stage1.rebnconv3.bn_s1.running_var", "stage1.rebnconv4.conv_s1.weight", "stage1.rebnconv4.conv_s1.bias", "stage1.rebnconv4.bn_s1.weight", "stage1.rebnconv4.bn_s1.bias", "stage1.rebnconv4.bn_s1.running_mean", "stage1.rebnconv4.bn_s1.running_var", "stage1.rebnconv5.conv_s1.weight", "stage1.rebnconv5.conv_s1.bias", "stage1.rebnconv5.bn_s1.weight", "stage1.rebnconv5.bn_s1.bias", "stage1.rebnconv5.bn_s1.running_mean", "stage1.rebnconv5.bn_s1.running_var", "stage1.rebnconv6.conv_s1.weight", "stage1.rebnconv6.conv_s1.bias", "stage1.rebnconv6.bn_s1.weight", "stage1.rebnconv6.bn_s1.bias", "stage1.rebnconv6.bn_s1.running_mean", "stage1.rebnconv6.bn_s1.running_var", "stage1.rebnconv7.conv_s1.weight", "stage1.rebnconv7.conv_s1.bias", "stage1.rebnconv7.bn_s1.weight", "stage1.rebnconv7.bn_s1.bias", "stage1.rebnconv7.bn_s1.running_mean", "stage1.rebnconv7.bn_s1.running_var", "stage1.rebnconv6d.conv_s1.weight", "stage1.rebnconv6d.conv_s1.bias", "stage1.rebnconv6d.bn_s1.weight", "stage1.rebnconv6d.bn_s1.bias", "stage1.rebnconv6d.bn_s1.running_mean", "stage1.rebnconv6d.bn_s1.running_var", "stage1.rebnconv5d.conv_s1.weight", "stage1.rebnconv5d.conv_s1.bias", "stage1.rebnconv5d.bn_s1.weight", "stage1.rebnconv5d.bn_s1.bias", "stage1.rebnconv5d.bn_s1.running_mean", "stage1.rebnconv5d.bn_s1.running_var", "stage1.rebnconv4d.conv_s1.weight", "stage1.rebnconv4d.conv_s1.bias", "stage1.rebnconv4d.bn_s1.weight", "stage1.rebnconv4d.bn_s1.bias", "stage1.rebnconv4d.bn_s1.running_mean", "stage1.rebnconv4d.bn_s1.running_var", "stage1.rebnconv3d.conv_s1.weight", "stage1.rebnconv3d.conv_s1.bias", "stage1.rebnconv3d.bn_s1.weight", "stage1.rebnconv3d.bn_s1.bias", "stage1.rebnconv3d.bn_s1.running_mean", "stage1.rebnconv3d.bn_s1.running_var", "stage1.rebnconv2d.conv_s1.weight", "stage1.rebnconv2d.conv_s1.bias", "stage1.rebnconv2d.bn_s1.weight", "stage1.rebnconv2d.bn_s1.bias", "stage1.rebnconv2d.bn_s1.running_mean", "stage1.rebnconv2d.bn_s1.running_var", "stage1.rebnconv1d.conv_s1.weight", "stage1.rebnconv1d.conv_s1.bias", "stage1.rebnconv1d.bn_s1.weight", "stage1.rebnconv1d.bn_s1.bias", "stage1.rebnconv1d.bn_s1.running_mean", "stage1.rebnconv1d.bn_s1.running_var", "stage2.rebnconvin.conv_s1.weight", "stage2.rebnconvin.conv_s1.bias", "stage2.rebnconvin.bn_s1.weight", "stage2.rebnconvin.bn_s1.bias", "stage2.rebnconvin.bn_s1.running_mean", "stage2.rebnconvin.bn_s1.running_var", "stage2.rebnconv1.conv_s1.weight", "stage2.rebnconv1.conv_s1.bias", "stage2.rebnconv1.bn_s1.weight", "stage2.rebnconv1.bn_s1.bias", "stage2.rebnconv1.bn_s1.running_mean", "stage2.rebnconv1.bn_s1.running_var", "stage2.rebnconv2.conv_s1.weight", "stage2.rebnconv2.conv_s1.bias", "stage2.rebnconv2.bn_s1.weight", "stage2.rebnconv2.bn_s1.bias", "stage2.rebnconv2.bn_s1.running_mean", "stage2.rebnconv2.bn_s1.running_var", "stage2.rebnconv3.conv_s1.weight", "stage2.rebnconv3.conv_s1.bias", "stage2.rebnconv3.bn_s1.weight", "stage2.rebnconv3.bn_s1.bias", "stage2.rebnconv3.bn_s1.running_mean", "stage2.rebnconv3.bn_s1.running_var", "stage2.rebnconv4.conv_s1.weight", "stage2.rebnconv4.conv_s1.bias", "stage2.rebnconv4.bn_s1.weight", "stage2.rebnconv4.bn_s1.bias", "stage2.rebnconv4.bn_s1.running_mean", "stage2.rebnconv4.bn_s1.running_var", "stage2.rebnconv5.conv_s1.weight", "stage2.rebnconv5.conv_s1.bias", "stage2.rebnconv5.bn_s1.weight", "stage2.rebnconv5.bn_s1.bias", "stage2.rebnconv5.bn_s1.running_mean", "stage2.rebnconv5.bn_s1.running_var", "stage2.rebnconv6.conv_s1.weight", "stage2.rebnconv6.conv_s1.bias", "stage2.rebnconv6.bn_s1.weight", "stage2.rebnconv6.bn_s1.bias", "stage2.rebnconv6.bn_s1.running_mean", "stage2.rebnconv6.bn_s1.running_var", "stage2.rebnconv5d.conv_s1.weight", "stage2.rebnconv5d.conv_s1.bias", "stage2.rebnconv5d.bn_s1.weight", "stage2.rebnconv5d.bn_s1.bias", "stage2.rebnconv5d.bn_s1.running_mean", "stage2.rebnconv5d.bn_s1.running_var", "stage2.rebnconv4d.conv_s1.weight", "stage2.rebnconv4d.conv_s1.bias", "stage2.rebnconv4d.bn_s1.weight", "stage2.rebnconv4d.bn_s1.bias", "stage2.rebnconv4d.bn_s1.running_mean", "stage2.rebnconv4d.bn_s1.running_var", "stage2.rebnconv3d.conv_s1.weight", "stage2.rebnconv3d.conv_s1.bias", "stage2.rebnconv3d.bn_s1.weight", "stage2.rebnconv3d.bn_s1.bias", "stage2.rebnconv3d.bn_s1.running_mean", "stage2.rebnconv3d.bn_s1.running_var", "stage2.rebnconv2d.conv_s1.weight", "stage2.rebnconv2d.conv_s1.bias", "stage2.rebnconv2d.bn_s1.weight", "stage2.rebnconv2d.bn_s1.bias", "stage2.rebnconv2d.bn_s1.running_mean", "stage2.rebnconv2d.bn_s1.running_var", "stage2.rebnconv1d.conv_s1.weight", "stage2.rebnconv1d.conv_s1.bias", "stage2.rebnconv1d.bn_s1.weight", "stage2.rebnconv1d.bn_s1.bias", "stage2.rebnconv1d.bn_s1.running_mean", "stage2.rebnconv1d.bn_s1.running_var", "stage3.rebnconvin.conv_s1.weight", "stage3.rebnconvin.conv_s1.bias", "stage3.rebnconvin.bn_s1.weight", "stage3.rebnconvin.bn_s1.bias", "stage3.rebnconvin.bn_s1.running_mean", "stage3.rebnconvin.bn_s1.running_var", "stage3.rebnconv1.conv_s1.weight", "stage3.rebnconv1.conv_s1.bias", "stage3.rebnconv1.bn_s1.weight", "stage3.rebnconv1.bn_s1.bias", "stage3.rebnconv1.bn_s1.running_mean", "stage3.rebnconv1.bn_s1.running_var", "stage3.rebnconv2.conv_s1.weight", "stage3.rebnconv2.conv_s1.bias", "stage3.rebnconv2.bn_s1.weight", "stage3.rebnconv2.bn_s1.bias", "stage3.rebnconv2.bn_s1.running_mean", "stage3.rebnconv2.bn_s1.running_var", "stage3.rebnconv3.conv_s1.weight", "stage3.rebnconv3.conv_s1.bias", "stage3.rebnconv3.bn_s1.weight", "stage3.rebnconv3.bn_s1.bias", "stage3.rebnconv3.bn_s1.running_mean", "stage3.rebnconv3.bn_s1.running_var", "stage3.rebnconv4.conv_s1.weight", "stage3.rebnconv4.conv_s1.bias", "stage3.rebnconv4.bn_s1.weight", "stage3.rebnconv4.bn_s1.bias", "stage3.rebnconv4.bn_s1.running_mean", "stage3.rebnconv4.bn_s1.running_var", "stage3.rebnconv5.conv_s1.weight", "stage3.rebnconv5.conv_s1.bias", "stage3.rebnconv5.bn_s1.weight", "stage3.rebnconv5.bn_s1.bias", "stage3.rebnconv5.bn_s1.running_mean", "stage3.rebnconv5.bn_s1.running_var", "stage3.rebnconv4d.conv_s1.weight", "stage3.rebnconv4d.conv_s1.bias", "stage3.rebnconv4d.bn_s1.weight", "stage3.rebnconv4d.bn_s1.bias", "stage3.rebnconv4d.bn_s1.running_mean", "stage3.rebnconv4d.bn_s1.running_var", "stage3.rebnconv3d.conv_s1.weight", "stage3.rebnconv3d.conv_s1.bias", "stage3.rebnconv3d.bn_s1.weight", "stage3.rebnconv3d.bn_s1.bias", "stage3.rebnconv3d.bn_s1.running_mean", "stage3.rebnconv3d.bn_s1.running_var", "stage3.rebnconv2d.conv_s1.weight", "stage3.rebnconv2d.conv_s1.bias", "stage3.rebnconv2d.bn_s1.weight", "stage3.rebnconv2d.bn_s1.bias", "stage3.rebnconv2d.bn_s1.running_mean", "stage3.rebnconv2d.bn_s1.running_var", "stage3.rebnconv1d.conv_s1.weight", "stage3.rebnconv1d.conv_s1.bias", "stage3.rebnconv1d.bn_s1.weight", "stage3.rebnconv1d.bn_s1.bias", "stage3.rebnconv1d.bn_s1.running_mean", "stage3.rebnconv1d.bn_s1.running_var", "stage4.rebnconvin.conv_s1.weight", "stage4.rebnconvin.conv_s1.bias", "stage4.rebnconvin.bn_s1.weight", "stage4.rebnconvin.bn_s1.bias", "stage4.rebnconvin.bn_s1.running_mean", "stage4.rebnconvin.bn_s1.running_var", "stage4.rebnconv1.conv_s1.weight", "stage4.rebnconv1.conv_s1.bias", "stage4.rebnconv1.bn_s1.weight", "stage4.rebnconv1.bn_s1.bias", "stage4.rebnconv1.bn_s1.running_mean", "stage4.rebnconv1.bn_s1.running_var", "stage4.rebnconv2.conv_s1.weight", "stage4.rebnconv2.conv_s1.bias", "stage4.rebnconv2.bn_s1.weight", "stage4.rebnconv2.bn_s1.bias", "stage4.rebnconv2.bn_s1.running_mean", "stage4.rebnconv2.bn_s1.running_var", "stage4.rebnconv3.conv_s1.weight", "stage4.rebnconv3.conv_s1.bias", "stage4.rebnconv3.bn_s1.weight", "stage4.rebnconv3.bn_s1.bias", "stage4.rebnconv3.bn_s1.running_mean", "stage4.rebnconv3.bn_s1.running_var", "stage4.rebnconv4.conv_s1.weight", "stage4.rebnconv4.conv_s1.bias", "stage4.rebnconv4.bn_s1.weight", "stage4.rebnconv4.bn_s1.bias", "stage4.rebnconv4.bn_s1.running_mean", "stage4.rebnconv4.bn_s1.running_var", "stage4.rebnconv3d.conv_s1.weight", "stage4.rebnconv3d.conv_s1.bias", "stage4.rebnconv3d.bn_s1.weight", "stage4.rebnconv3d.bn_s1.bias", "stage4.rebnconv3d.bn_s1.running_mean", "stage4.rebnconv3d.bn_s1.running_var", "stage4.rebnconv2d.conv_s1.weight", "stage4.rebnconv2d.conv_s1.bias", "stage4.rebnconv2d.bn_s1.weight", "stage4.rebnconv2d.bn_s1.bias", "stage4.rebnconv2d.bn_s1.running_mean", "stage4.rebnconv2d.bn_s1.running_var", "stage4.rebnconv1d.conv_s1.weight", "stage4.rebnconv1d.conv_s1.bias", "stage4.rebnconv1d.bn_s1.weight", "stage4.rebnconv1d.bn_s1.bias", "stage4.rebnconv1d.bn_s1.running_mean", "stage4.rebnconv1d.bn_s1.running_var", "stage5.rebnconvin.conv_s1.weight", "stage5.rebnconvin.conv_s1.bias", "stage5.rebnconvin.bn_s1.weight", "stage5.rebnconvin.bn_s1.bias", "stage5.rebnconvin.bn_s1.running_mean", "stage5.rebnconvin.bn_s1.running_var", "stage5.rebnconv1.conv_s1.weight", "stage5.rebnconv1.conv_s1.bias", "stage5.rebnconv1.bn_s1.weight", "stage5.rebnconv1.bn_s1.bias", "stage5.rebnconv1.bn_s1.running_mean", "stage5.rebnconv1.bn_s1.running_var", "stage5.rebnconv2.conv_s1.weight", "stage5.rebnconv2.conv_s1.bias", "stage5.rebnconv2.bn_s1.weight", "stage5.rebnconv2.bn_s1.bias", "stage5.rebnconv2.bn_s1.running_mean", "stage5.rebnconv2.bn_s1.running_var", "stage5.rebnconv3.conv_s1.weight", "stage5.rebnconv3.conv_s1.bias", "stage5.rebnconv3.bn_s1.weight", "stage5.rebnconv3.bn_s1.bias", "stage5.rebnconv3.bn_s1.running_mean", "stage5.rebnconv3.bn_s1.running_var", "stage5.rebnconv4.conv_s1.weight", "stage5.rebnconv4.conv_s1.bias", "stage5.rebnconv4.bn_s1.weight", "stage5.rebnconv4.bn_s1.bias", "stage5.rebnconv4.bn_s1.running_mean", "stage5.rebnconv4.bn_s1.running_var", "stage5.rebnconv3d.conv_s1.weight", "stage5.rebnconv3d.conv_s1.bias", "stage5.rebnconv3d.bn_s1.weight", "stage5.rebnconv3d.bn_s1.bias", "stage5.rebnconv3d.bn_s1.running_mean", "stage5.rebnconv3d.bn_s1.running_var", "stage5.rebnconv2d.conv_s1.weight", "stage5.rebnconv2d.conv_s1.bias", "stage5.rebnconv2d.bn_s1.weight", "stage5.rebnconv2d.bn_s1.bias", "stage5.rebnconv2d.bn_s1.running_mean", "stage5.rebnconv2d.bn_s1.running_var", "stage5.rebnconv1d.conv_s1.weight", "stage5.rebnconv1d.conv_s1.bias", "stage5.rebnconv1d.bn_s1.weight", "stage5.rebnconv1d.bn_s1.bias", "stage5.rebnconv1d.bn_s1.running_mean", "stage5.rebnconv1d.bn_s1.running_var", "stage6.rebnconvin.conv_s1.weight", "stage6.rebnconvin.conv_s1.bias", "stage6.rebnconvin.bn_s1.weight", "stage6.rebnconvin.bn_s1.bias", "stage6.rebnconvin.bn_s1.running_mean", "stage6.rebnconvin.bn_s1.running_var", "stage6.rebnconv1.conv_s1.weight", "stage6.rebnconv1.conv_s1.bias", "stage6.rebnconv1.bn_s1.weight", "stage6.rebnconv1.bn_s1.bias", "stage6.rebnconv1.bn_s1.running_mean", "stage6.rebnconv1.bn_s1.running_var", "stage6.rebnconv2.conv_s1.weight", "stage6.rebnconv2.conv_s1.bias", "stage6.rebnconv2.bn_s1.weight", "stage6.rebnconv2.bn_s1.bias", "stage6.rebnconv2.bn_s1.running_mean", "stage6.rebnconv2.bn_s1.running_var", "stage6.rebnconv3.conv_s1.weight", "stage6.rebnconv3.conv_s1.bias", "stage6.rebnconv3.bn_s1.weight", "stage6.rebnconv3.bn_s1.bias", "stage6.rebnconv3.bn_s1.running_mean", "stage6.rebnconv3.bn_s1.running_var", "stage6.rebnconv4.conv_s1.weight", "stage6.rebnconv4.conv_s1.bias", "stage6.rebnconv4.bn_s1.weight", "stage6.rebnconv4.bn_s1.bias", "stage6.rebnconv4.bn_s1.running_mean", "stage6.rebnconv4.bn_s1.running_var", "stage6.rebnconv3d.conv_s1.weight", "stage6.rebnconv3d.conv_s1.bias", "stage6.rebnconv3d.bn_s1.weight", "stage6.rebnconv3d.bn_s1.bias", "stage6.rebnconv3d.bn_s1.running_mean", "stage6.rebnconv3d.bn_s1.running_var", "stage6.rebnconv2d.conv_s1.weight", "stage6.rebnconv2d.conv_s1.bias", "stage6.rebnconv2d.bn_s1.weight", "stage6.rebnconv2d.bn_s1.bias", "stage6.rebnconv2d.bn_s1.running_mean", "stage6.rebnconv2d.bn_s1.running_var", "stage6.rebnconv1d.conv_s1.weight", "stage6.rebnconv1d.conv_s1.bias", "stage6.rebnconv1d.bn_s1.weight", "stage6.rebnconv1d.bn_s1.bias", "stage6.rebnconv1d.bn_s1.running_mean", "stage6.rebnconv1d.bn_s1.running_var", "stage5d.rebnconvin.conv_s1.weight", "stage5d.rebnconvin.conv_s1.bias", "stage5d.rebnconvin.bn_s1.weight", "stage5d.rebnconvin.bn_s1.bias", "stage5d.rebnconvin.bn_s1.running_mean", "stage5d.rebnconvin.bn_s1.running_var", "stage5d.rebnconv1.conv_s1.weight", "stage5d.rebnconv1.conv_s1.bias", "stage5d.rebnconv1.bn_s1.weight", "stage5d.rebnconv1.bn_s1.bias", "stage5d.rebnconv1.bn_s1.running_mean", "stage5d.rebnconv1.bn_s1.running_var", "stage5d.rebnconv2.conv_s1.weight", "stage5d.rebnconv2.conv_s1.bias", "stage5d.rebnconv2.bn_s1.weight", "stage5d.rebnconv2.bn_s1.bias", "stage5d.rebnconv2.bn_s1.running_mean", "stage5d.rebnconv2.bn_s1.running_var", "stage5d.rebnconv3.conv_s1.weight", "stage5d.rebnconv3.conv_s1.bias", "stage5d.rebnconv3.bn_s1.weight", "stage5d.rebnconv3.bn_s1.bias", "stage5d.rebnconv3.bn_s1.running_mean", "stage5d.rebnconv3.bn_s1.running_var", "stage5d.rebnconv4.conv_s1.weight", "stage5d.rebnconv4.conv_s1.bias", "stage5d.rebnconv4.bn_s1.weight", "stage5d.rebnconv4.bn_s1.bias", "stage5d.rebnconv4.bn_s1.running_mean", "stage5d.rebnconv4.bn_s1.running_var", "stage5d.rebnconv3d.conv_s1.weight", "stage5d.rebnconv3d.conv_s1.bias", "stage5d.rebnconv3d.bn_s1.weight", "stage5d.rebnconv3d.bn_s1.bias", "stage5d.rebnconv3d.bn_s1.running_mean", "stage5d.rebnconv3d.bn_s1.running_var", "stage5d.rebnconv2d.conv_s1.weight", "stage5d.rebnconv2d.conv_s1.bias", "stage5d.rebnconv2d.bn_s1.weight", "stage5d.rebnconv2d.bn_s1.bias", "stage5d.rebnconv2d.bn_s1.running_mean", "stage5d.rebnconv2d.bn_s1.running_var", "stage5d.rebnconv1d.conv_s1.weight", "stage5d.rebnconv1d.conv_s1.bias", "stage5d.rebnconv1d.bn_s1.weight", "stage5d.rebnconv1d.bn_s1.bias", "stage5d.rebnconv1d.bn_s1.running_mean", "stage5d.rebnconv1d.bn_s1.running_var", "stage4d.rebnconvin.conv_s1.weight", "stage4d.rebnconvin.conv_s1.bias", "stage4d.rebnconvin.bn_s1.weight", "stage4d.rebnconvin.bn_s1.bias", "stage4d.rebnconvin.bn_s1.running_mean", "stage4d.rebnconvin.bn_s1.running_var", "stage4d.rebnconv1.conv_s1.weight", "stage4d.rebnconv1.conv_s1.bias", "stage4d.rebnconv1.bn_s1.weight", "stage4d.rebnconv1.bn_s1.bias", "stage4d.rebnconv1.bn_s1.running_mean", "stage4d.rebnconv1.bn_s1.running_var", "stage4d.rebnconv2.conv_s1.weight", "stage4d.rebnconv2.conv_s1.bias", "stage4d.rebnconv2.bn_s1.weight", "stage4d.rebnconv2.bn_s1.bias", "stage4d.rebnconv2.bn_s1.running_mean", "stage4d.rebnconv2.bn_s1.running_var", "stage4d.rebnconv3.conv_s1.weight", "stage4d.rebnconv3.conv_s1.bias", "stage4d.rebnconv3.bn_s1.weight", "stage4d.rebnconv3.bn_s1.bias", "stage4d.rebnconv3.bn_s1.running_mean", "stage4d.rebnconv3.bn_s1.running_var", "stage4d.rebnconv4.conv_s1.weight", "stage4d.rebnconv4.conv_s1.bias", "stage4d.rebnconv4.bn_s1.weight", "stage4d.rebnconv4.bn_s1.bias", "stage4d.rebnconv4.bn_s1.running_mean", "stage4d.rebnconv4.bn_s1.running_var", "stage4d.rebnconv3d.conv_s1.weight", "stage4d.rebnconv3d.conv_s1.bias", "stage4d.rebnconv3d.bn_s1.weight", "stage4d.rebnconv3d.bn_s1.bias", "stage4d.rebnconv3d.bn_s1.running_mean", "stage4d.rebnconv3d.bn_s1.running_var", "stage4d.rebnconv2d.conv_s1.weight", "stage4d.rebnconv2d.conv_s1.bias", "stage4d.rebnconv2d.bn_s1.weight", "stage4d.rebnconv2d.bn_s1.bias", "stage4d.rebnconv2d.bn_s1.running_mean", "stage4d.rebnconv2d.bn_s1.running_var", "stage4d.rebnconv1d.conv_s1.weight", "stage4d.rebnconv1d.conv_s1.bias", "stage4d.rebnconv1d.bn_s1.weight", "stage4d.rebnconv1d.bn_s1.bias", "stage4d.rebnconv1d.bn_s1.running_mean", "stage4d.rebnconv1d.bn_s1.running_var", "stage3d.rebnconvin.conv_s1.weight", "stage3d.rebnconvin.conv_s1.bias", "stage3d.rebnconvin.bn_s1.weight", "stage3d.rebnconvin.bn_s1.bias", "stage3d.rebnconvin.bn_s1.running_mean", "stage3d.rebnconvin.bn_s1.running_var", "stage3d.rebnconv1.conv_s1.weight", "stage3d.rebnconv1.conv_s1.bias", "stage3d.rebnconv1.bn_s1.weight", "stage3d.rebnconv1.bn_s1.bias", "stage3d.rebnconv1.bn_s1.running_mean", "stage3d.rebnconv1.bn_s1.running_var", "stage3d.rebnconv2.conv_s1.weight", "stage3d.rebnconv2.conv_s1.bias", "stage3d.rebnconv2.bn_s1.weight", "stage3d.rebnconv2.bn_s1.bias", "stage3d.rebnconv2.bn_s1.running_mean", "stage3d.rebnconv2.bn_s1.running_var", "stage3d.rebnconv3.conv_s1.weight", "stage3d.rebnconv3.conv_s1.bias", "stage3d.rebnconv3.bn_s1.weight", "stage3d.rebnconv3.bn_s1.bias", "stage3d.rebnconv3.bn_s1.running_mean", "stage3d.rebnconv3.bn_s1.running_var", "stage3d.rebnconv4.conv_s1.weight", "stage3d.rebnconv4.conv_s1.bias", "stage3d.rebnconv4.bn_s1.weight", "stage3d.rebnconv4.bn_s1.bias", "stage3d.rebnconv4.bn_s1.running_mean", "stage3d.rebnconv4.bn_s1.running_var", "stage3d.rebnconv5.conv_s1.weight", "stage3d.rebnconv5.conv_s1.bias", "stage3d.rebnconv5.bn_s1.weight", "stage3d.rebnconv5.bn_s1.bias", "stage3d.rebnconv5.bn_s1.running_mean", "stage3d.rebnconv5.bn_s1.running_var", "stage3d.rebnconv4d.conv_s1.weight", "stage3d.rebnconv4d.conv_s1.bias", "stage3d.rebnconv4d.bn_s1.weight", "stage3d.rebnconv4d.bn_s1.bias", "stage3d.rebnconv4d.bn_s1.running_mean", "stage3d.rebnconv4d.bn_s1.running_var", "stage3d.rebnconv3d.conv_s1.weight", "stage3d.rebnconv3d.conv_s1.bias", "stage3d.rebnconv3d.bn_s1.weight", "stage3d.rebnconv3d.bn_s1.bias", "stage3d.rebnconv3d.bn_s1.running_mean", "stage3d.rebnconv3d.bn_s1.running_var", "stage3d.rebnconv2d.conv_s1.weight", "stage3d.rebnconv2d.conv_s1.bias", "stage3d.rebnconv2d.bn_s1.weight", "stage3d.rebnconv2d.bn_s1.bias", "stage3d.rebnconv2d.bn_s1.running_mean", "stage3d.rebnconv2d.bn_s1.running_var", "stage3d.rebnconv1d.conv_s1.weight", "stage3d.rebnconv1d.conv_s1.bias", "stage3d.rebnconv1d.bn_s1.weight", "stage3d.rebnconv1d.bn_s1.bias", "stage3d.rebnconv1d.bn_s1.running_mean", "stage3d.rebnconv1d.bn_s1.running_var", "stage2d.rebnconvin.conv_s1.weight", "stage2d.rebnconvin.conv_s1.bias", "stage2d.rebnconvin.bn_s1.weight", "stage2d.rebnconvin.bn_s1.bias", "stage2d.rebnconvin.bn_s1.running_mean", "stage2d.rebnconvin.bn_s1.running_var", "stage2d.rebnconv1.conv_s1.weight", "stage2d.rebnconv1.conv_s1.bias", "stage2d.rebnconv1.bn_s1.weight", "stage2d.rebnconv1.bn_s1.bias", "stage2d.rebnconv1.bn_s1.running_mean", "stage2d.rebnconv1.bn_s1.running_var", "stage2d.rebnconv2.conv_s1.weight", "stage2d.rebnconv2.conv_s1.bias", "stage2d.rebnconv2.bn_s1.weight", "stage2d.rebnconv2.bn_s1.bias", "stage2d.rebnconv2.bn_s1.running_mean", "stage2d.rebnconv2.bn_s1.running_var", "stage2d.rebnconv3.conv_s1.weight", "stage2d.rebnconv3.conv_s1.bias", "stage2d.rebnconv3.bn_s1.weight", "stage2d.rebnconv3.bn_s1.bias", "stage2d.rebnconv3.bn_s1.running_mean", "stage2d.rebnconv3.bn_s1.running_var", "stage2d.rebnconv4.conv_s1.weight", "stage2d.rebnconv4.conv_s1.bias", "stage2d.rebnconv4.bn_s1.weight", "stage2d.rebnconv4.bn_s1.bias", "stage2d.rebnconv4.bn_s1.running_mean", "stage2d.rebnconv4.bn_s1.running_var", "stage2d.rebnconv5.conv_s1.weight", "stage2d.rebnconv5.conv_s1.bias", "stage2d.rebnconv5.bn_s1.weight", "stage2d.rebnconv5.bn_s1.bias", "stage2d.rebnconv5.bn_s1.running_mean", "stage2d.rebnconv5.bn_s1.running_var", "stage2d.rebnconv6.conv_s1.weight", "stage2d.rebnconv6.conv_s1.bias", "stage2d.rebnconv6.bn_s1.weight", "stage2d.rebnconv6.bn_s1.bias", "stage2d.rebnconv6.bn_s1.running_mean", "stage2d.rebnconv6.bn_s1.running_var", "stage2d.rebnconv5d.conv_s1.weight", "stage2d.rebnconv5d.conv_s1.bias", "stage2d.rebnconv5d.bn_s1.weight", "stage2d.rebnconv5d.bn_s1.bias", "stage2d.rebnconv5d.bn_s1.running_mean", "stage2d.rebnconv5d.bn_s1.running_var", "stage2d.rebnconv4d.conv_s1.weight", "stage2d.rebnconv4d.conv_s1.bias", "stage2d.rebnconv4d.bn_s1.weight", "stage2d.rebnconv4d.bn_s1.bias", "stage2d.rebnconv4d.bn_s1.running_mean", "stage2d.rebnconv4d.bn_s1.running_var", "stage2d.rebnconv3d.conv_s1.weight", "stage2d.rebnconv3d.conv_s1.bias", "stage2d.rebnconv3d.bn_s1.weight", "stage2d.rebnconv3d.bn_s1.bias", "stage2d.rebnconv3d.bn_s1.running_mean", "stage2d.rebnconv3d.bn_s1.running_var", "stage2d.rebnconv2d.conv_s1.weight", "stage2d.rebnconv2d.conv_s1.bias", "stage2d.rebnconv2d.bn_s1.weight", "stage2d.rebnconv2d.bn_s1.bias", "stage2d.rebnconv2d.bn_s1.running_mean", "stage2d.rebnconv2d.bn_s1.running_var", "stage2d.rebnconv1d.conv_s1.weight", "stage2d.rebnconv1d.conv_s1.bias", "stage2d.rebnconv1d.bn_s1.weight", "stage2d.rebnconv1d.bn_s1.bias", "stage2d.rebnconv1d.bn_s1.running_mean", "stage2d.rebnconv1d.bn_s1.running_var", "stage1d.rebnconvin.conv_s1.weight", "stage1d.rebnconvin.conv_s1.bias", "stage1d.rebnconvin.bn_s1.weight", "stage1d.rebnconvin.bn_s1.bias", "stage1d.rebnconvin.bn_s1.running_mean", "stage1d.rebnconvin.bn_s1.running_var", "stage1d.rebnconv1.conv_s1.weight", "stage1d.rebnconv1.conv_s1.bias", "stage1d.rebnconv1.bn_s1.weight", "stage1d.rebnconv1.bn_s1.bias", "stage1d.rebnconv1.bn_s1.running_mean", "stage1d.rebnconv1.bn_s1.running_var", "stage1d.rebnconv2.conv_s1.weight", "stage1d.rebnconv2.conv_s1.bias", "stage1d.rebnconv2.bn_s1.weight", "stage1d.rebnconv2.bn_s1.bias", "stage1d.rebnconv2.bn_s1.running_mean", "stage1d.rebnconv2.bn_s1.running_var", "stage1d.rebnconv3.conv_s1.weight", "stage1d.rebnconv3.conv_s1.bias", "stage1d.rebnconv3.bn_s1.weight", "stage1d.rebnconv3.bn_s1.bias", "stage1d.rebnconv3.bn_s1.running_mean", "stage1d.rebnconv3.bn_s1.running_var", "stage1d.rebnconv4.conv_s1.weight", "stage1d.rebnconv4.conv_s1.bias", "stage1d.rebnconv4.bn_s1.weight", "stage1d.rebnconv4.bn_s1.bias", "stage1d.rebnconv4.bn_s1.running_mean", "stage1d.rebnconv4.bn_s1.running_var", "stage1d.rebnconv5.conv_s1.weight", "stage1d.rebnconv5.conv_s1.bias", "stage1d.rebnconv5.bn_s1.weight", "stage1d.rebnconv5.bn_s1.bias", "stage1d.rebnconv5.bn_s1.running_mean", "stage1d.rebnconv5.bn_s1.running_var", "stage1d.rebnconv6.conv_s1.weight", "stage1d.rebnconv6.conv_s1.bias", "stage1d.rebnconv6.bn_s1.weight", "stage1d.rebnconv6.bn_s1.bias", "stage1d.rebnconv6.bn_s1.running_mean", "stage1d.rebnconv6.bn_s1.running_var", "stage1d.rebnconv7.conv_s1.weight", "stage1d.rebnconv7.conv_s1.bias", "stage1d.rebnconv7.bn_s1.weight", "stage1d.rebnconv7.bn_s1.bias", "stage1d.rebnconv7.bn_s1.running_mean", "stage1d.rebnconv7.bn_s1.running_var", "stage1d.rebnconv6d.conv_s1.weight", "stage1d.rebnconv6d.conv_s1.bias", "stage1d.rebnconv6d.bn_s1.weight", "stage1d.rebnconv6d.bn_s1.bias", "stage1d.rebnconv6d.bn_s1.running_mean", "stage1d.rebnconv6d.bn_s1.running_var", "stage1d.rebnconv5d.conv_s1.weight", "stage1d.rebnconv5d.conv_s1.bias", "stage1d.rebnconv5d.bn_s1.weight", "stage1d.rebnconv5d.bn_s1.bias", "stage1d.rebnconv5d.bn_s1.running_mean", "stage1d.rebnconv5d.bn_s1.running_var", "stage1d.rebnconv4d.conv_s1.weight", "stage1d.rebnconv4d.conv_s1.bias", "stage1d.rebnconv4d.bn_s1.weight", "stage1d.rebnconv4d.bn_s1.bias", "stage1d.rebnconv4d.bn_s1.running_mean", "stage1d.rebnconv4d.bn_s1.running_var", "stage1d.rebnconv3d.conv_s1.weight", "stage1d.rebnconv3d.conv_s1.bias", "stage1d.rebnconv3d.bn_s1.weight", "stage1d.rebnconv3d.bn_s1.bias", "stage1d.rebnconv3d.bn_s1.running_mean", "stage1d.rebnconv3d.bn_s1.running_var", "stage1d.rebnconv2d.conv_s1.weight", "stage1d.rebnconv2d.conv_s1.bias", "stage1d.rebnconv2d.bn_s1.weight", "stage1d.rebnconv2d.bn_s1.bias", "stage1d.rebnconv2d.bn_s1.running_mean", "stage1d.rebnconv2d.bn_s1.running_var", "stage1d.rebnconv1d.conv_s1.weight", "stage1d.rebnconv1d.conv_s1.bias", "stage1d.rebnconv1d.bn_s1.weight", "stage1d.rebnconv1d.bn_s1.bias", "stage1d.rebnconv1d.bn_s1.running_mean", "stage1d.rebnconv1d.bn_s1.running_var", "side1.weight", "side1.bias", "side2.weight", "side2.bias", "side3.weight", "side3.bias", "side4.weight", "side4.bias", "side5.weight", "side5.bias", "side6.weight", "side6.bias", "outconv.weight", "outconv.bias".
        Unexpected key(s) in state_dict: "rebnconvin.conv_s1.weight", "rebnconvin.conv_s1.bias", "rebnconvin.bn_s1.weight", "rebnconvin.bn_s1.bias", "rebnconvin.bn_s1.running_mean", "rebnconvin.bn_s1.running_var", "rebnconvin.bn_s1.num_batches_tracked", "rebnconv1.conv_s1.weight", "rebnconv1.conv_s1.bias", "rebnconv1.bn_s1.weight", "rebnconv1.bn_s1.bias", "rebnconv1.bn_s1.running_mean", "rebnconv1.bn_s1.running_var", "rebnconv1.bn_s1.num_batches_tracked", "rebnconv2.conv_s1.weight", "rebnconv2.conv_s1.bias", "rebnconv2.bn_s1.weight", "rebnconv2.bn_s1.bias", "rebnconv2.bn_s1.running_mean", "rebnconv2.bn_s1.running_var", "rebnconv2.bn_s1.num_batches_tracked", "rebnconv3.conv_s1.weight", "rebnconv3.conv_s1.bias", "rebnconv3.bn_s1.weight", "rebnconv3.bn_s1.bias", "rebnconv3.bn_s1.running_mean", "rebnconv3.bn_s1.running_var", "rebnconv3.bn_s1.num_batches_tracked", "rebnconv4.conv_s1.weight", "rebnconv4.conv_s1.bias", "rebnconv4.bn_s1.weight", "rebnconv4.bn_s1.bias", "rebnconv4.bn_s1.running_mean", "rebnconv4.bn_s1.running_var", "rebnconv4.bn_s1.num_batches_tracked", "rebnconv5.conv_s1.weight", "rebnconv5.conv_s1.bias", "rebnconv5.bn_s1.weight", "rebnconv5.bn_s1.bias", "rebnconv5.bn_s1.running_mean", "rebnconv5.bn_s1.running_var", "rebnconv5.bn_s1.num_batches_tracked", "rebnconv6.conv_s1.weight", "rebnconv6.conv_s1.bias", "rebnconv6.bn_s1.weight", "rebnconv6.bn_s1.bias", "rebnconv6.bn_s1.running_mean", "rebnconv6.bn_s1.running_var", "rebnconv6.bn_s1.num_batches_tracked", "rebnconv7.conv_s1.weight", "rebnconv7.conv_s1.bias", "rebnconv7.bn_s1.weight", "rebnconv7.bn_s1.bias", "rebnconv7.bn_s1.running_mean", "rebnconv7.bn_s1.running_var", "rebnconv7.bn_s1.num_batches_tracked", "rebnconv6d.conv_s1.weight", "rebnconv6d.conv_s1.bias", "rebnconv6d.bn_s1.weight", "rebnconv6d.bn_s1.bias", "rebnconv6d.bn_s1.running_mean", "rebnconv6d.bn_s1.running_var", "rebnconv6d.bn_s1.num_batches_tracked", "rebnconv5d.conv_s1.weight", "rebnconv5d.conv_s1.bias", "rebnconv5d.bn_s1.weight", "rebnconv5d.bn_s1.bias", "rebnconv5d.bn_s1.running_mean", "rebnconv5d.bn_s1.running_var", "rebnconv5d.bn_s1.num_batches_tracked", "rebnconv4d.conv_s1.weight", "rebnconv4d.conv_s1.bias", "rebnconv4d.bn_s1.weight", "rebnconv4d.bn_s1.bias", "rebnconv4d.bn_s1.running_mean", "rebnconv4d.bn_s1.running_var", "rebnconv4d.bn_s1.num_batches_tracked", "rebnconv3d.conv_s1.weight", "rebnconv3d.conv_s1.bias", "rebnconv3d.bn_s1.weight", "rebnconv3d.bn_s1.bias", "rebnconv3d.bn_s1.running_mean", "rebnconv3d.bn_s1.running_var", "rebnconv3d.bn_s1.num_batches_tracked", "rebnconv2d.conv_s1.weight", "rebnconv2d.conv_s1.bias", "rebnconv2d.bn_s1.weight", "rebnconv "rebnconv1d.conv_s1.weight", "rebnconv1d.conv_s1.bias", "rebnconv1d.bn_s1.weight", "rebnconv1d.bn_s1.bias", "rebnconv1d.bn_s1.running_mean", "rebnconv1d.bn_s1.running_var", "rebnconv1d.bn_s1.num_batches_tracked", ".rebnconvin.conv_s1.weight", ".rebnconvin.conv_s1.bias", ".rebnconvin.bn_s1.weight", ".rebnconvin.bn_s1.bias", ".rebnconvin.bn_s1.running_mean", ".rebnconvin.bn_s1.running_var", ".rebnconvin.bn_s1.num_batches_tracked", ".rebnconv1.conv_s1.weight", ".rebnconv1.conv_s1.bias", ".rebnconv1.bn_s1.weight", ".rebnconv1.bn_s1.bias", ".rebnconv1.bn_s1.running_mean", ".rebnconv1.bn_s1.running.weight", ".rebnconv2.bn_s1.bias", ".rebnconv2.bn_s1.running_mean", ".rebnconv2.bn_s1.running_var", ".rebnconv2.bn_s1.num_batches_tracked", ".rebnconv3.conv_s1.weight", ".rebnconv3.conv_s1.bias", ".rebnconv3.bn_s1.weight", ".rebnconv3.bn_s1.bias", ".rebnconv3.bn_s1.running_mean", ".rebnconv3.bn_s1.running_var", ".rebnconv3.bn_s1.num_batches_tracked", ".rebnconv4.conv_s1.weight", ".rebnconv4.conv_s1.bias", ".rebnconv4.bn_s1.weight", ".rebnconv4.bn_s1.bias", ".rebnconv4.bn_s1.running_mean", ".rebnconv4.bn_s1.running_var", ".rebnconv4.bn_s1.num_batches_tracked", ".rebnconv3d.conv_s1.weight", ".rebnconv3d.conv_s1.bias", ".rebnconv3d.bn_s1.weight", ".rebnconv3d.bn_s1.bias", ".rebnconv3d.bn_s1.running_mean", ".rebnconv3d.bn_s1.running_var", ".rebnconv3d.bn_s1.num_batches_tracked", ".rebnconv2d.conv_s1.weight", ".rebnconv2d.conv_s1.bias", ".rebnconv2d.bn_s1.weight", ".rebnconv2d.bn_s1.bias", ".rebnconv2d.bn_s1.running_mean", ".rebnconv2d.bn_s1.running_var", ".rebnconv2d.bn_s1.num_batches_tracked", ".rebnconv1d.conv_s1.weight", ".rebnconv1d.conv_s1.bias", ".rebnconv1d.bn_s1.weight", ".rebnconv1d.bn_s1.bias", ".rebnconv1d.bn_s1.running_mean", ".rebnconv1d.bn_s1.running_var", ".rebnconv1d.bn_s1.num_batches_tracked", ".rebnconv5.conv_s1.weight", ".rebnconv5.conv_s1.bias", ".rebnconv5.bn_s1.weight", ".rebnconv5.bn_s1.bias", ".rebnconv5.bn_s1.running_mean", ".rebnconv5.bn_s1.running_var", ".rebnconv5.bn_s1.num_batches_tracked", ".rebnconv4d.conv_s1.weight", ".rebnconv4d.conv_s1.bias", ".rebnconv4d.bn_s1.weight", ".rebnconv4d.bn_s1.bias", ".rebnconv4d.bn_s1.running_mean", ".rebnconv4d.bn_s1.running_var", ".rebnconv4d.bn_s1.num_batches_tracked", ".rebnconv6.conv_s1.weight", ".rebnconv6.conv_s1.bias", ".rebnconv6.bn_s1.weight", ".rebnconv6.bn_s1.bias", ".rebnconv6.bn_s1.running_mean", ".rebnconv6.bn_s1.running_var", ".rebnconv6.bn_s1.num_batches_tracked", ".rebnconv5d.conv_s1.weight", ".rebnconv5d.conv_s1.bias", ".rebnconv5d.bn_s1.weight", ".rebnconv5d.bn_s1.bias", ".rebnconv5d.bn_s1.running_mean", ".rebnconv5d.bn_s1.running_var", ".rebnconv5d.bn_s1.num_batches_tracked", ".rebnconv7.conv_s1.weight", ".rebnconv7.conv_s1.bias", ".rebnconv7.bn_s1.weight", ".rebnconv7.bn_s1.bias", ".rebnconv7.bn_s1.running_mean", ".rebnconv7.bn_s1.running_var", ".rebnconv7.bn_s1.num_batches_tracked", ".rebnconv6d.conv_s1.weight", ".rebnconv6d.conv_s1.bias", ".rebnconv6d.bn_s1.weight", ".rebnconv6d.bn_s1.bias", ".rebnconv6d.bn_s1.running_mean", ".rebnconv6d.bn_s1.running_var", ".rebnconv6d.bn_s1.num_batches_tracked", "eight", "ias", ".weight", ".bias".

Model can be loaded only with strict=False:
model.load_state_dict(new_state_dict, strict=False)

What could be the reason for it?

@wildoctopus
Copy link

I have exactly the same issue. Pre-trained mode from Hugging Face works OK. The model that is trained using instructions fails.

RuntimeError: Error(s) in loading state_dict for U2NET:
        Missing key(s) in state_dict: "stage1.rebnconvin.conv_s1.weight", "stage1.rebnconvin.conv_s1.bias", "stage1.rebnconvin.bn_s1.weight", "stage1.rebnconvin.bn_s1.bias", "stage1.rebnconvin.bn_s1.running_mean", "stage1.rebnconvin.bn_s1.running_var", "stage1.rebnconv1.conv_s1.weight", "stage1.rebnconv1.conv_s1.bias", "stage1.rebnconv1.bn_s1.weight", "stage1.rebnconv1.bn_s1.bias", "stage1.rebnconv1.bn_s1.running_mean", "stage1.rebnconv1.bn_s1.running_var", "stage1.rebnconv2.conv_s1.weight", "stage1.rebnconv2.conv_s1.bias", "stage1.rebnconv2.bn_s1.weight", "stage1.rebnconv2.bn_s1.bias", "stage1.rebnconv2.bn_s1.running_mean", "stage1.rebnconv2.bn_s1.running_var", "stage1.rebnconv3.conv_s1.weight", "stage1.rebnconv3.conv_s1.bias", "stage1.rebnconv3.bn_s1.weight", "stage1.rebnconv3.bn_s1.bias", "stage1.rebnconv3.bn_s1.running_mean", "stage1.rebnconv3.bn_s1.running_var", "stage1.rebnconv4.conv_s1.weight", "stage1.rebnconv4.conv_s1.bias", "stage1.rebnconv4.bn_s1.weight", "stage1.rebnconv4.bn_s1.bias", "stage1.rebnconv4.bn_s1.running_mean", "stage1.rebnconv4.bn_s1.running_var", "stage1.rebnconv5.conv_s1.weight", "stage1.rebnconv5.conv_s1.bias", "stage1.rebnconv5.bn_s1.weight", "stage1.rebnconv5.bn_s1.bias", "stage1.rebnconv5.bn_s1.running_mean", "stage1.rebnconv5.bn_s1.running_var", "stage1.rebnconv6.conv_s1.weight", "stage1.rebnconv6.conv_s1.bias", "stage1.rebnconv6.bn_s1.weight", "stage1.rebnconv6.bn_s1.bias", "stage1.rebnconv6.bn_s1.running_mean", "stage1.rebnconv6.bn_s1.running_var", "stage1.rebnconv7.conv_s1.weight", "stage1.rebnconv7.conv_s1.bias", "stage1.rebnconv7.bn_s1.weight", "stage1.rebnconv7.bn_s1.bias", "stage1.rebnconv7.bn_s1.running_mean", "stage1.rebnconv7.bn_s1.running_var", "stage1.rebnconv6d.conv_s1.weight", "stage1.rebnconv6d.conv_s1.bias", "stage1.rebnconv6d.bn_s1.weight", "stage1.rebnconv6d.bn_s1.bias", "stage1.rebnconv6d.bn_s1.running_mean", "stage1.rebnconv6d.bn_s1.running_var", "stage1.rebnconv5d.conv_s1.weight", "stage1.rebnconv5d.conv_s1.bias", "stage1.rebnconv5d.bn_s1.weight", "stage1.rebnconv5d.bn_s1.bias", "stage1.rebnconv5d.bn_s1.running_mean", "stage1.rebnconv5d.bn_s1.running_var", "stage1.rebnconv4d.conv_s1.weight", "stage1.rebnconv4d.conv_s1.bias", "stage1.rebnconv4d.bn_s1.weight", "stage1.rebnconv4d.bn_s1.bias", "stage1.rebnconv4d.bn_s1.running_mean", "stage1.rebnconv4d.bn_s1.running_var", "stage1.rebnconv3d.conv_s1.weight", "stage1.rebnconv3d.conv_s1.bias", "stage1.rebnconv3d.bn_s1.weight", "stage1.rebnconv3d.bn_s1.bias", "stage1.rebnconv3d.bn_s1.running_mean", "stage1.rebnconv3d.bn_s1.running_var", "stage1.rebnconv2d.conv_s1.weight", "stage1.rebnconv2d.conv_s1.bias", "stage1.rebnconv2d.bn_s1.weight", "stage1.rebnconv2d.bn_s1.bias", "stage1.rebnconv2d.bn_s1.running_mean", "stage1.rebnconv2d.bn_s1.running_var", "stage1.rebnconv1d.conv_s1.weight", "stage1.rebnconv1d.conv_s1.bias", "stage1.rebnconv1d.bn_s1.weight", "stage1.rebnconv1d.bn_s1.bias", "stage1.rebnconv1d.bn_s1.running_mean", "stage1.rebnconv1d.bn_s1.running_var", "stage2.rebnconvin.conv_s1.weight", "stage2.rebnconvin.conv_s1.bias", "stage2.rebnconvin.bn_s1.weight", "stage2.rebnconvin.bn_s1.bias", "stage2.rebnconvin.bn_s1.running_mean", "stage2.rebnconvin.bn_s1.running_var", "stage2.rebnconv1.conv_s1.weight", "stage2.rebnconv1.conv_s1.bias", "stage2.rebnconv1.bn_s1.weight", "stage2.rebnconv1.bn_s1.bias", "stage2.rebnconv1.bn_s1.running_mean", "stage2.rebnconv1.bn_s1.running_var", "stage2.rebnconv2.conv_s1.weight", "stage2.rebnconv2.conv_s1.bias", "stage2.rebnconv2.bn_s1.weight", "stage2.rebnconv2.bn_s1.bias", "stage2.rebnconv2.bn_s1.running_mean", "stage2.rebnconv2.bn_s1.running_var", "stage2.rebnconv3.conv_s1.weight", "stage2.rebnconv3.conv_s1.bias", "stage2.rebnconv3.bn_s1.weight", "stage2.rebnconv3.bn_s1.bias", "stage2.rebnconv3.bn_s1.running_mean", "stage2.rebnconv3.bn_s1.running_var", "stage2.rebnconv4.conv_s1.weight", "stage2.rebnconv4.conv_s1.bias", "stage2.rebnconv4.bn_s1.weight", "stage2.rebnconv4.bn_s1.bias", "stage2.rebnconv4.bn_s1.running_mean", "stage2.rebnconv4.bn_s1.running_var", "stage2.rebnconv5.conv_s1.weight", "stage2.rebnconv5.conv_s1.bias", "stage2.rebnconv5.bn_s1.weight", "stage2.rebnconv5.bn_s1.bias", "stage2.rebnconv5.bn_s1.running_mean", "stage2.rebnconv5.bn_s1.running_var", "stage2.rebnconv6.conv_s1.weight", "stage2.rebnconv6.conv_s1.bias", "stage2.rebnconv6.bn_s1.weight", "stage2.rebnconv6.bn_s1.bias", "stage2.rebnconv6.bn_s1.running_mean", "stage2.rebnconv6.bn_s1.running_var", "stage2.rebnconv5d.conv_s1.weight", "stage2.rebnconv5d.conv_s1.bias", "stage2.rebnconv5d.bn_s1.weight", "stage2.rebnconv5d.bn_s1.bias", "stage2.rebnconv5d.bn_s1.running_mean", "stage2.rebnconv5d.bn_s1.running_var", "stage2.rebnconv4d.conv_s1.weight", "stage2.rebnconv4d.conv_s1.bias", "stage2.rebnconv4d.bn_s1.weight", "stage2.rebnconv4d.bn_s1.bias", "stage2.rebnconv4d.bn_s1.running_mean", "stage2.rebnconv4d.bn_s1.running_var", "stage2.rebnconv3d.conv_s1.weight", "stage2.rebnconv3d.conv_s1.bias", "stage2.rebnconv3d.bn_s1.weight", "stage2.rebnconv3d.bn_s1.bias", "stage2.rebnconv3d.bn_s1.running_mean", "stage2.rebnconv3d.bn_s1.running_var", "stage2.rebnconv2d.conv_s1.weight", "stage2.rebnconv2d.conv_s1.bias", "stage2.rebnconv2d.bn_s1.weight", "stage2.rebnconv2d.bn_s1.bias", "stage2.rebnconv2d.bn_s1.running_mean", "stage2.rebnconv2d.bn_s1.running_var", "stage2.rebnconv1d.conv_s1.weight", "stage2.rebnconv1d.conv_s1.bias", "stage2.rebnconv1d.bn_s1.weight", "stage2.rebnconv1d.bn_s1.bias", "stage2.rebnconv1d.bn_s1.running_mean", "stage2.rebnconv1d.bn_s1.running_var", "stage3.rebnconvin.conv_s1.weight", "stage3.rebnconvin.conv_s1.bias", "stage3.rebnconvin.bn_s1.weight", "stage3.rebnconvin.bn_s1.bias", "stage3.rebnconvin.bn_s1.running_mean", "stage3.rebnconvin.bn_s1.running_var", "stage3.rebnconv1.conv_s1.weight", "stage3.rebnconv1.conv_s1.bias", "stage3.rebnconv1.bn_s1.weight", "stage3.rebnconv1.bn_s1.bias", "stage3.rebnconv1.bn_s1.running_mean", "stage3.rebnconv1.bn_s1.running_var", "stage3.rebnconv2.conv_s1.weight", "stage3.rebnconv2.conv_s1.bias", "stage3.rebnconv2.bn_s1.weight", "stage3.rebnconv2.bn_s1.bias", "stage3.rebnconv2.bn_s1.running_mean", "stage3.rebnconv2.bn_s1.running_var", "stage3.rebnconv3.conv_s1.weight", "stage3.rebnconv3.conv_s1.bias", "stage3.rebnconv3.bn_s1.weight", "stage3.rebnconv3.bn_s1.bias", "stage3.rebnconv3.bn_s1.running_mean", "stage3.rebnconv3.bn_s1.running_var", "stage3.rebnconv4.conv_s1.weight", "stage3.rebnconv4.conv_s1.bias", "stage3.rebnconv4.bn_s1.weight", "stage3.rebnconv4.bn_s1.bias", "stage3.rebnconv4.bn_s1.running_mean", "stage3.rebnconv4.bn_s1.running_var", "stage3.rebnconv5.conv_s1.weight", "stage3.rebnconv5.conv_s1.bias", "stage3.rebnconv5.bn_s1.weight", "stage3.rebnconv5.bn_s1.bias", "stage3.rebnconv5.bn_s1.running_mean", "stage3.rebnconv5.bn_s1.running_var", "stage3.rebnconv4d.conv_s1.weight", "stage3.rebnconv4d.conv_s1.bias", "stage3.rebnconv4d.bn_s1.weight", "stage3.rebnconv4d.bn_s1.bias", "stage3.rebnconv4d.bn_s1.running_mean", "stage3.rebnconv4d.bn_s1.running_var", "stage3.rebnconv3d.conv_s1.weight", "stage3.rebnconv3d.conv_s1.bias", "stage3.rebnconv3d.bn_s1.weight", "stage3.rebnconv3d.bn_s1.bias", "stage3.rebnconv3d.bn_s1.running_mean", "stage3.rebnconv3d.bn_s1.running_var", "stage3.rebnconv2d.conv_s1.weight", "stage3.rebnconv2d.conv_s1.bias", "stage3.rebnconv2d.bn_s1.weight", "stage3.rebnconv2d.bn_s1.bias", "stage3.rebnconv2d.bn_s1.running_mean", "stage3.rebnconv2d.bn_s1.running_var", "stage3.rebnconv1d.conv_s1.weight", "stage3.rebnconv1d.conv_s1.bias", "stage3.rebnconv1d.bn_s1.weight", "stage3.rebnconv1d.bn_s1.bias", "stage3.rebnconv1d.bn_s1.running_mean", "stage3.rebnconv1d.bn_s1.running_var", "stage4.rebnconvin.conv_s1.weight", "stage4.rebnconvin.conv_s1.bias", "stage4.rebnconvin.bn_s1.weight", "stage4.rebnconvin.bn_s1.bias", "stage4.rebnconvin.bn_s1.running_mean", "stage4.rebnconvin.bn_s1.running_var", "stage4.rebnconv1.conv_s1.weight", "stage4.rebnconv1.conv_s1.bias", "stage4.rebnconv1.bn_s1.weight", "stage4.rebnconv1.bn_s1.bias", "stage4.rebnconv1.bn_s1.running_mean", "stage4.rebnconv1.bn_s1.running_var", "stage4.rebnconv2.conv_s1.weight", "stage4.rebnconv2.conv_s1.bias", "stage4.rebnconv2.bn_s1.weight", "stage4.rebnconv2.bn_s1.bias", "stage4.rebnconv2.bn_s1.running_mean", "stage4.rebnconv2.bn_s1.running_var", "stage4.rebnconv3.conv_s1.weight", "stage4.rebnconv3.conv_s1.bias", "stage4.rebnconv3.bn_s1.weight", "stage4.rebnconv3.bn_s1.bias", "stage4.rebnconv3.bn_s1.running_mean", "stage4.rebnconv3.bn_s1.running_var", "stage4.rebnconv4.conv_s1.weight", "stage4.rebnconv4.conv_s1.bias", "stage4.rebnconv4.bn_s1.weight", "stage4.rebnconv4.bn_s1.bias", "stage4.rebnconv4.bn_s1.running_mean", "stage4.rebnconv4.bn_s1.running_var", "stage4.rebnconv3d.conv_s1.weight", "stage4.rebnconv3d.conv_s1.bias", "stage4.rebnconv3d.bn_s1.weight", "stage4.rebnconv3d.bn_s1.bias", "stage4.rebnconv3d.bn_s1.running_mean", "stage4.rebnconv3d.bn_s1.running_var", "stage4.rebnconv2d.conv_s1.weight", "stage4.rebnconv2d.conv_s1.bias", "stage4.rebnconv2d.bn_s1.weight", "stage4.rebnconv2d.bn_s1.bias", "stage4.rebnconv2d.bn_s1.running_mean", "stage4.rebnconv2d.bn_s1.running_var", "stage4.rebnconv1d.conv_s1.weight", "stage4.rebnconv1d.conv_s1.bias", "stage4.rebnconv1d.bn_s1.weight", "stage4.rebnconv1d.bn_s1.bias", "stage4.rebnconv1d.bn_s1.running_mean", "stage4.rebnconv1d.bn_s1.running_var", "stage5.rebnconvin.conv_s1.weight", "stage5.rebnconvin.conv_s1.bias", "stage5.rebnconvin.bn_s1.weight", "stage5.rebnconvin.bn_s1.bias", "stage5.rebnconvin.bn_s1.running_mean", "stage5.rebnconvin.bn_s1.running_var", "stage5.rebnconv1.conv_s1.weight", "stage5.rebnconv1.conv_s1.bias", "stage5.rebnconv1.bn_s1.weight", "stage5.rebnconv1.bn_s1.bias", "stage5.rebnconv1.bn_s1.running_mean", "stage5.rebnconv1.bn_s1.running_var", "stage5.rebnconv2.conv_s1.weight", "stage5.rebnconv2.conv_s1.bias", "stage5.rebnconv2.bn_s1.weight", "stage5.rebnconv2.bn_s1.bias", "stage5.rebnconv2.bn_s1.running_mean", "stage5.rebnconv2.bn_s1.running_var", "stage5.rebnconv3.conv_s1.weight", "stage5.rebnconv3.conv_s1.bias", "stage5.rebnconv3.bn_s1.weight", "stage5.rebnconv3.bn_s1.bias", "stage5.rebnconv3.bn_s1.running_mean", "stage5.rebnconv3.bn_s1.running_var", "stage5.rebnconv4.conv_s1.weight", "stage5.rebnconv4.conv_s1.bias", "stage5.rebnconv4.bn_s1.weight", "stage5.rebnconv4.bn_s1.bias", "stage5.rebnconv4.bn_s1.running_mean", "stage5.rebnconv4.bn_s1.running_var", "stage5.rebnconv3d.conv_s1.weight", "stage5.rebnconv3d.conv_s1.bias", "stage5.rebnconv3d.bn_s1.weight", "stage5.rebnconv3d.bn_s1.bias", "stage5.rebnconv3d.bn_s1.running_mean", "stage5.rebnconv3d.bn_s1.running_var", "stage5.rebnconv2d.conv_s1.weight", "stage5.rebnconv2d.conv_s1.bias", "stage5.rebnconv2d.bn_s1.weight", "stage5.rebnconv2d.bn_s1.bias", "stage5.rebnconv2d.bn_s1.running_mean", "stage5.rebnconv2d.bn_s1.running_var", "stage5.rebnconv1d.conv_s1.weight", "stage5.rebnconv1d.conv_s1.bias", "stage5.rebnconv1d.bn_s1.weight", "stage5.rebnconv1d.bn_s1.bias", "stage5.rebnconv1d.bn_s1.running_mean", "stage5.rebnconv1d.bn_s1.running_var", "stage6.rebnconvin.conv_s1.weight", "stage6.rebnconvin.conv_s1.bias", "stage6.rebnconvin.bn_s1.weight", "stage6.rebnconvin.bn_s1.bias", "stage6.rebnconvin.bn_s1.running_mean", "stage6.rebnconvin.bn_s1.running_var", "stage6.rebnconv1.conv_s1.weight", "stage6.rebnconv1.conv_s1.bias", "stage6.rebnconv1.bn_s1.weight", "stage6.rebnconv1.bn_s1.bias", "stage6.rebnconv1.bn_s1.running_mean", "stage6.rebnconv1.bn_s1.running_var", "stage6.rebnconv2.conv_s1.weight", "stage6.rebnconv2.conv_s1.bias", "stage6.rebnconv2.bn_s1.weight", "stage6.rebnconv2.bn_s1.bias", "stage6.rebnconv2.bn_s1.running_mean", "stage6.rebnconv2.bn_s1.running_var", "stage6.rebnconv3.conv_s1.weight", "stage6.rebnconv3.conv_s1.bias", "stage6.rebnconv3.bn_s1.weight", "stage6.rebnconv3.bn_s1.bias", "stage6.rebnconv3.bn_s1.running_mean", "stage6.rebnconv3.bn_s1.running_var", "stage6.rebnconv4.conv_s1.weight", "stage6.rebnconv4.conv_s1.bias", "stage6.rebnconv4.bn_s1.weight", "stage6.rebnconv4.bn_s1.bias", "stage6.rebnconv4.bn_s1.running_mean", "stage6.rebnconv4.bn_s1.running_var", "stage6.rebnconv3d.conv_s1.weight", "stage6.rebnconv3d.conv_s1.bias", "stage6.rebnconv3d.bn_s1.weight", "stage6.rebnconv3d.bn_s1.bias", "stage6.rebnconv3d.bn_s1.running_mean", "stage6.rebnconv3d.bn_s1.running_var", "stage6.rebnconv2d.conv_s1.weight", "stage6.rebnconv2d.conv_s1.bias", "stage6.rebnconv2d.bn_s1.weight", "stage6.rebnconv2d.bn_s1.bias", "stage6.rebnconv2d.bn_s1.running_mean", "stage6.rebnconv2d.bn_s1.running_var", "stage6.rebnconv1d.conv_s1.weight", "stage6.rebnconv1d.conv_s1.bias", "stage6.rebnconv1d.bn_s1.weight", "stage6.rebnconv1d.bn_s1.bias", "stage6.rebnconv1d.bn_s1.running_mean", "stage6.rebnconv1d.bn_s1.running_var", "stage5d.rebnconvin.conv_s1.weight", "stage5d.rebnconvin.conv_s1.bias", "stage5d.rebnconvin.bn_s1.weight", "stage5d.rebnconvin.bn_s1.bias", "stage5d.rebnconvin.bn_s1.running_mean", "stage5d.rebnconvin.bn_s1.running_var", "stage5d.rebnconv1.conv_s1.weight", "stage5d.rebnconv1.conv_s1.bias", "stage5d.rebnconv1.bn_s1.weight", "stage5d.rebnconv1.bn_s1.bias", "stage5d.rebnconv1.bn_s1.running_mean", "stage5d.rebnconv1.bn_s1.running_var", "stage5d.rebnconv2.conv_s1.weight", "stage5d.rebnconv2.conv_s1.bias", "stage5d.rebnconv2.bn_s1.weight", "stage5d.rebnconv2.bn_s1.bias", "stage5d.rebnconv2.bn_s1.running_mean", "stage5d.rebnconv2.bn_s1.running_var", "stage5d.rebnconv3.conv_s1.weight", "stage5d.rebnconv3.conv_s1.bias", "stage5d.rebnconv3.bn_s1.weight", "stage5d.rebnconv3.bn_s1.bias", "stage5d.rebnconv3.bn_s1.running_mean", "stage5d.rebnconv3.bn_s1.running_var", "stage5d.rebnconv4.conv_s1.weight", "stage5d.rebnconv4.conv_s1.bias", "stage5d.rebnconv4.bn_s1.weight", "stage5d.rebnconv4.bn_s1.bias", "stage5d.rebnconv4.bn_s1.running_mean", "stage5d.rebnconv4.bn_s1.running_var", "stage5d.rebnconv3d.conv_s1.weight", "stage5d.rebnconv3d.conv_s1.bias", "stage5d.rebnconv3d.bn_s1.weight", "stage5d.rebnconv3d.bn_s1.bias", "stage5d.rebnconv3d.bn_s1.running_mean", "stage5d.rebnconv3d.bn_s1.running_var", "stage5d.rebnconv2d.conv_s1.weight", "stage5d.rebnconv2d.conv_s1.bias", "stage5d.rebnconv2d.bn_s1.weight", "stage5d.rebnconv2d.bn_s1.bias", "stage5d.rebnconv2d.bn_s1.running_mean", "stage5d.rebnconv2d.bn_s1.running_var", "stage5d.rebnconv1d.conv_s1.weight", "stage5d.rebnconv1d.conv_s1.bias", "stage5d.rebnconv1d.bn_s1.weight", "stage5d.rebnconv1d.bn_s1.bias", "stage5d.rebnconv1d.bn_s1.running_mean", "stage5d.rebnconv1d.bn_s1.running_var", "stage4d.rebnconvin.conv_s1.weight", "stage4d.rebnconvin.conv_s1.bias", "stage4d.rebnconvin.bn_s1.weight", "stage4d.rebnconvin.bn_s1.bias", "stage4d.rebnconvin.bn_s1.running_mean", "stage4d.rebnconvin.bn_s1.running_var", "stage4d.rebnconv1.conv_s1.weight", "stage4d.rebnconv1.conv_s1.bias", "stage4d.rebnconv1.bn_s1.weight", "stage4d.rebnconv1.bn_s1.bias", "stage4d.rebnconv1.bn_s1.running_mean", "stage4d.rebnconv1.bn_s1.running_var", "stage4d.rebnconv2.conv_s1.weight", "stage4d.rebnconv2.conv_s1.bias", "stage4d.rebnconv2.bn_s1.weight", "stage4d.rebnconv2.bn_s1.bias", "stage4d.rebnconv2.bn_s1.running_mean", "stage4d.rebnconv2.bn_s1.running_var", "stage4d.rebnconv3.conv_s1.weight", "stage4d.rebnconv3.conv_s1.bias", "stage4d.rebnconv3.bn_s1.weight", "stage4d.rebnconv3.bn_s1.bias", "stage4d.rebnconv3.bn_s1.running_mean", "stage4d.rebnconv3.bn_s1.running_var", "stage4d.rebnconv4.conv_s1.weight", "stage4d.rebnconv4.conv_s1.bias", "stage4d.rebnconv4.bn_s1.weight", "stage4d.rebnconv4.bn_s1.bias", "stage4d.rebnconv4.bn_s1.running_mean", "stage4d.rebnconv4.bn_s1.running_var", "stage4d.rebnconv3d.conv_s1.weight", "stage4d.rebnconv3d.conv_s1.bias", "stage4d.rebnconv3d.bn_s1.weight", "stage4d.rebnconv3d.bn_s1.bias", "stage4d.rebnconv3d.bn_s1.running_mean", "stage4d.rebnconv3d.bn_s1.running_var", "stage4d.rebnconv2d.conv_s1.weight", "stage4d.rebnconv2d.conv_s1.bias", "stage4d.rebnconv2d.bn_s1.weight", "stage4d.rebnconv2d.bn_s1.bias", "stage4d.rebnconv2d.bn_s1.running_mean", "stage4d.rebnconv2d.bn_s1.running_var", "stage4d.rebnconv1d.conv_s1.weight", "stage4d.rebnconv1d.conv_s1.bias", "stage4d.rebnconv1d.bn_s1.weight", "stage4d.rebnconv1d.bn_s1.bias", "stage4d.rebnconv1d.bn_s1.running_mean", "stage4d.rebnconv1d.bn_s1.running_var", "stage3d.rebnconvin.conv_s1.weight", "stage3d.rebnconvin.conv_s1.bias", "stage3d.rebnconvin.bn_s1.weight", "stage3d.rebnconvin.bn_s1.bias", "stage3d.rebnconvin.bn_s1.running_mean", "stage3d.rebnconvin.bn_s1.running_var", "stage3d.rebnconv1.conv_s1.weight", "stage3d.rebnconv1.conv_s1.bias", "stage3d.rebnconv1.bn_s1.weight", "stage3d.rebnconv1.bn_s1.bias", "stage3d.rebnconv1.bn_s1.running_mean", "stage3d.rebnconv1.bn_s1.running_var", "stage3d.rebnconv2.conv_s1.weight", "stage3d.rebnconv2.conv_s1.bias", "stage3d.rebnconv2.bn_s1.weight", "stage3d.rebnconv2.bn_s1.bias", "stage3d.rebnconv2.bn_s1.running_mean", "stage3d.rebnconv2.bn_s1.running_var", "stage3d.rebnconv3.conv_s1.weight", "stage3d.rebnconv3.conv_s1.bias", "stage3d.rebnconv3.bn_s1.weight", "stage3d.rebnconv3.bn_s1.bias", "stage3d.rebnconv3.bn_s1.running_mean", "stage3d.rebnconv3.bn_s1.running_var", "stage3d.rebnconv4.conv_s1.weight", "stage3d.rebnconv4.conv_s1.bias", "stage3d.rebnconv4.bn_s1.weight", "stage3d.rebnconv4.bn_s1.bias", "stage3d.rebnconv4.bn_s1.running_mean", "stage3d.rebnconv4.bn_s1.running_var", "stage3d.rebnconv5.conv_s1.weight", "stage3d.rebnconv5.conv_s1.bias", "stage3d.rebnconv5.bn_s1.weight", "stage3d.rebnconv5.bn_s1.bias", "stage3d.rebnconv5.bn_s1.running_mean", "stage3d.rebnconv5.bn_s1.running_var", "stage3d.rebnconv4d.conv_s1.weight", "stage3d.rebnconv4d.conv_s1.bias", "stage3d.rebnconv4d.bn_s1.weight", "stage3d.rebnconv4d.bn_s1.bias", "stage3d.rebnconv4d.bn_s1.running_mean", "stage3d.rebnconv4d.bn_s1.running_var", "stage3d.rebnconv3d.conv_s1.weight", "stage3d.rebnconv3d.conv_s1.bias", "stage3d.rebnconv3d.bn_s1.weight", "stage3d.rebnconv3d.bn_s1.bias", "stage3d.rebnconv3d.bn_s1.running_mean", "stage3d.rebnconv3d.bn_s1.running_var", "stage3d.rebnconv2d.conv_s1.weight", "stage3d.rebnconv2d.conv_s1.bias", "stage3d.rebnconv2d.bn_s1.weight", "stage3d.rebnconv2d.bn_s1.bias", "stage3d.rebnconv2d.bn_s1.running_mean", "stage3d.rebnconv2d.bn_s1.running_var", "stage3d.rebnconv1d.conv_s1.weight", "stage3d.rebnconv1d.conv_s1.bias", "stage3d.rebnconv1d.bn_s1.weight", "stage3d.rebnconv1d.bn_s1.bias", "stage3d.rebnconv1d.bn_s1.running_mean", "stage3d.rebnconv1d.bn_s1.running_var", "stage2d.rebnconvin.conv_s1.weight", "stage2d.rebnconvin.conv_s1.bias", "stage2d.rebnconvin.bn_s1.weight", "stage2d.rebnconvin.bn_s1.bias", "stage2d.rebnconvin.bn_s1.running_mean", "stage2d.rebnconvin.bn_s1.running_var", "stage2d.rebnconv1.conv_s1.weight", "stage2d.rebnconv1.conv_s1.bias", "stage2d.rebnconv1.bn_s1.weight", "stage2d.rebnconv1.bn_s1.bias", "stage2d.rebnconv1.bn_s1.running_mean", "stage2d.rebnconv1.bn_s1.running_var", "stage2d.rebnconv2.conv_s1.weight", "stage2d.rebnconv2.conv_s1.bias", "stage2d.rebnconv2.bn_s1.weight", "stage2d.rebnconv2.bn_s1.bias", "stage2d.rebnconv2.bn_s1.running_mean", "stage2d.rebnconv2.bn_s1.running_var", "stage2d.rebnconv3.conv_s1.weight", "stage2d.rebnconv3.conv_s1.bias", "stage2d.rebnconv3.bn_s1.weight", "stage2d.rebnconv3.bn_s1.bias", "stage2d.rebnconv3.bn_s1.running_mean", "stage2d.rebnconv3.bn_s1.running_var", "stage2d.rebnconv4.conv_s1.weight", "stage2d.rebnconv4.conv_s1.bias", "stage2d.rebnconv4.bn_s1.weight", "stage2d.rebnconv4.bn_s1.bias", "stage2d.rebnconv4.bn_s1.running_mean", "stage2d.rebnconv4.bn_s1.running_var", "stage2d.rebnconv5.conv_s1.weight", "stage2d.rebnconv5.conv_s1.bias", "stage2d.rebnconv5.bn_s1.weight", "stage2d.rebnconv5.bn_s1.bias", "stage2d.rebnconv5.bn_s1.running_mean", "stage2d.rebnconv5.bn_s1.running_var", "stage2d.rebnconv6.conv_s1.weight", "stage2d.rebnconv6.conv_s1.bias", "stage2d.rebnconv6.bn_s1.weight", "stage2d.rebnconv6.bn_s1.bias", "stage2d.rebnconv6.bn_s1.running_mean", "stage2d.rebnconv6.bn_s1.running_var", "stage2d.rebnconv5d.conv_s1.weight", "stage2d.rebnconv5d.conv_s1.bias", "stage2d.rebnconv5d.bn_s1.weight", "stage2d.rebnconv5d.bn_s1.bias", "stage2d.rebnconv5d.bn_s1.running_mean", "stage2d.rebnconv5d.bn_s1.running_var", "stage2d.rebnconv4d.conv_s1.weight", "stage2d.rebnconv4d.conv_s1.bias", "stage2d.rebnconv4d.bn_s1.weight", "stage2d.rebnconv4d.bn_s1.bias", "stage2d.rebnconv4d.bn_s1.running_mean", "stage2d.rebnconv4d.bn_s1.running_var", "stage2d.rebnconv3d.conv_s1.weight", "stage2d.rebnconv3d.conv_s1.bias", "stage2d.rebnconv3d.bn_s1.weight", "stage2d.rebnconv3d.bn_s1.bias", "stage2d.rebnconv3d.bn_s1.running_mean", "stage2d.rebnconv3d.bn_s1.running_var", "stage2d.rebnconv2d.conv_s1.weight", "stage2d.rebnconv2d.conv_s1.bias", "stage2d.rebnconv2d.bn_s1.weight", "stage2d.rebnconv2d.bn_s1.bias", "stage2d.rebnconv2d.bn_s1.running_mean", "stage2d.rebnconv2d.bn_s1.running_var", "stage2d.rebnconv1d.conv_s1.weight", "stage2d.rebnconv1d.conv_s1.bias", "stage2d.rebnconv1d.bn_s1.weight", "stage2d.rebnconv1d.bn_s1.bias", "stage2d.rebnconv1d.bn_s1.running_mean", "stage2d.rebnconv1d.bn_s1.running_var", "stage1d.rebnconvin.conv_s1.weight", "stage1d.rebnconvin.conv_s1.bias", "stage1d.rebnconvin.bn_s1.weight", "stage1d.rebnconvin.bn_s1.bias", "stage1d.rebnconvin.bn_s1.running_mean", "stage1d.rebnconvin.bn_s1.running_var", "stage1d.rebnconv1.conv_s1.weight", "stage1d.rebnconv1.conv_s1.bias", "stage1d.rebnconv1.bn_s1.weight", "stage1d.rebnconv1.bn_s1.bias", "stage1d.rebnconv1.bn_s1.running_mean", "stage1d.rebnconv1.bn_s1.running_var", "stage1d.rebnconv2.conv_s1.weight", "stage1d.rebnconv2.conv_s1.bias", "stage1d.rebnconv2.bn_s1.weight", "stage1d.rebnconv2.bn_s1.bias", "stage1d.rebnconv2.bn_s1.running_mean", "stage1d.rebnconv2.bn_s1.running_var", "stage1d.rebnconv3.conv_s1.weight", "stage1d.rebnconv3.conv_s1.bias", "stage1d.rebnconv3.bn_s1.weight", "stage1d.rebnconv3.bn_s1.bias", "stage1d.rebnconv3.bn_s1.running_mean", "stage1d.rebnconv3.bn_s1.running_var", "stage1d.rebnconv4.conv_s1.weight", "stage1d.rebnconv4.conv_s1.bias", "stage1d.rebnconv4.bn_s1.weight", "stage1d.rebnconv4.bn_s1.bias", "stage1d.rebnconv4.bn_s1.running_mean", "stage1d.rebnconv4.bn_s1.running_var", "stage1d.rebnconv5.conv_s1.weight", "stage1d.rebnconv5.conv_s1.bias", "stage1d.rebnconv5.bn_s1.weight", "stage1d.rebnconv5.bn_s1.bias", "stage1d.rebnconv5.bn_s1.running_mean", "stage1d.rebnconv5.bn_s1.running_var", "stage1d.rebnconv6.conv_s1.weight", "stage1d.rebnconv6.conv_s1.bias", "stage1d.rebnconv6.bn_s1.weight", "stage1d.rebnconv6.bn_s1.bias", "stage1d.rebnconv6.bn_s1.running_mean", "stage1d.rebnconv6.bn_s1.running_var", "stage1d.rebnconv7.conv_s1.weight", "stage1d.rebnconv7.conv_s1.bias", "stage1d.rebnconv7.bn_s1.weight", "stage1d.rebnconv7.bn_s1.bias", "stage1d.rebnconv7.bn_s1.running_mean", "stage1d.rebnconv7.bn_s1.running_var", "stage1d.rebnconv6d.conv_s1.weight", "stage1d.rebnconv6d.conv_s1.bias", "stage1d.rebnconv6d.bn_s1.weight", "stage1d.rebnconv6d.bn_s1.bias", "stage1d.rebnconv6d.bn_s1.running_mean", "stage1d.rebnconv6d.bn_s1.running_var", "stage1d.rebnconv5d.conv_s1.weight", "stage1d.rebnconv5d.conv_s1.bias", "stage1d.rebnconv5d.bn_s1.weight", "stage1d.rebnconv5d.bn_s1.bias", "stage1d.rebnconv5d.bn_s1.running_mean", "stage1d.rebnconv5d.bn_s1.running_var", "stage1d.rebnconv4d.conv_s1.weight", "stage1d.rebnconv4d.conv_s1.bias", "stage1d.rebnconv4d.bn_s1.weight", "stage1d.rebnconv4d.bn_s1.bias", "stage1d.rebnconv4d.bn_s1.running_mean", "stage1d.rebnconv4d.bn_s1.running_var", "stage1d.rebnconv3d.conv_s1.weight", "stage1d.rebnconv3d.conv_s1.bias", "stage1d.rebnconv3d.bn_s1.weight", "stage1d.rebnconv3d.bn_s1.bias", "stage1d.rebnconv3d.bn_s1.running_mean", "stage1d.rebnconv3d.bn_s1.running_var", "stage1d.rebnconv2d.conv_s1.weight", "stage1d.rebnconv2d.conv_s1.bias", "stage1d.rebnconv2d.bn_s1.weight", "stage1d.rebnconv2d.bn_s1.bias", "stage1d.rebnconv2d.bn_s1.running_mean", "stage1d.rebnconv2d.bn_s1.running_var", "stage1d.rebnconv1d.conv_s1.weight", "stage1d.rebnconv1d.conv_s1.bias", "stage1d.rebnconv1d.bn_s1.weight", "stage1d.rebnconv1d.bn_s1.bias", "stage1d.rebnconv1d.bn_s1.running_mean", "stage1d.rebnconv1d.bn_s1.running_var", "side1.weight", "side1.bias", "side2.weight", "side2.bias", "side3.weight", "side3.bias", "side4.weight", "side4.bias", "side5.weight", "side5.bias", "side6.weight", "side6.bias", "outconv.weight", "outconv.bias".
        Unexpected key(s) in state_dict: "rebnconvin.conv_s1.weight", "rebnconvin.conv_s1.bias", "rebnconvin.bn_s1.weight", "rebnconvin.bn_s1.bias", "rebnconvin.bn_s1.running_mean", "rebnconvin.bn_s1.running_var", "rebnconvin.bn_s1.num_batches_tracked", "rebnconv1.conv_s1.weight", "rebnconv1.conv_s1.bias", "rebnconv1.bn_s1.weight", "rebnconv1.bn_s1.bias", "rebnconv1.bn_s1.running_mean", "rebnconv1.bn_s1.running_var", "rebnconv1.bn_s1.num_batches_tracked", "rebnconv2.conv_s1.weight", "rebnconv2.conv_s1.bias", "rebnconv2.bn_s1.weight", "rebnconv2.bn_s1.bias", "rebnconv2.bn_s1.running_mean", "rebnconv2.bn_s1.running_var", "rebnconv2.bn_s1.num_batches_tracked", "rebnconv3.conv_s1.weight", "rebnconv3.conv_s1.bias", "rebnconv3.bn_s1.weight", "rebnconv3.bn_s1.bias", "rebnconv3.bn_s1.running_mean", "rebnconv3.bn_s1.running_var", "rebnconv3.bn_s1.num_batches_tracked", "rebnconv4.conv_s1.weight", "rebnconv4.conv_s1.bias", "rebnconv4.bn_s1.weight", "rebnconv4.bn_s1.bias", "rebnconv4.bn_s1.running_mean", "rebnconv4.bn_s1.running_var", "rebnconv4.bn_s1.num_batches_tracked", "rebnconv5.conv_s1.weight", "rebnconv5.conv_s1.bias", "rebnconv5.bn_s1.weight", "rebnconv5.bn_s1.bias", "rebnconv5.bn_s1.running_mean", "rebnconv5.bn_s1.running_var", "rebnconv5.bn_s1.num_batches_tracked", "rebnconv6.conv_s1.weight", "rebnconv6.conv_s1.bias", "rebnconv6.bn_s1.weight", "rebnconv6.bn_s1.bias", "rebnconv6.bn_s1.running_mean", "rebnconv6.bn_s1.running_var", "rebnconv6.bn_s1.num_batches_tracked", "rebnconv7.conv_s1.weight", "rebnconv7.conv_s1.bias", "rebnconv7.bn_s1.weight", "rebnconv7.bn_s1.bias", "rebnconv7.bn_s1.running_mean", "rebnconv7.bn_s1.running_var", "rebnconv7.bn_s1.num_batches_tracked", "rebnconv6d.conv_s1.weight", "rebnconv6d.conv_s1.bias", "rebnconv6d.bn_s1.weight", "rebnconv6d.bn_s1.bias", "rebnconv6d.bn_s1.running_mean", "rebnconv6d.bn_s1.running_var", "rebnconv6d.bn_s1.num_batches_tracked", "rebnconv5d.conv_s1.weight", "rebnconv5d.conv_s1.bias", "rebnconv5d.bn_s1.weight", "rebnconv5d.bn_s1.bias", "rebnconv5d.bn_s1.running_mean", "rebnconv5d.bn_s1.running_var", "rebnconv5d.bn_s1.num_batches_tracked", "rebnconv4d.conv_s1.weight", "rebnconv4d.conv_s1.bias", "rebnconv4d.bn_s1.weight", "rebnconv4d.bn_s1.bias", "rebnconv4d.bn_s1.running_mean", "rebnconv4d.bn_s1.running_var", "rebnconv4d.bn_s1.num_batches_tracked", "rebnconv3d.conv_s1.weight", "rebnconv3d.conv_s1.bias", "rebnconv3d.bn_s1.weight", "rebnconv3d.bn_s1.bias", "rebnconv3d.bn_s1.running_mean", "rebnconv3d.bn_s1.running_var", "rebnconv3d.bn_s1.num_batches_tracked", "rebnconv2d.conv_s1.weight", "rebnconv2d.conv_s1.bias", "rebnconv2d.bn_s1.weight", "rebnconv "rebnconv1d.conv_s1.weight", "rebnconv1d.conv_s1.bias", "rebnconv1d.bn_s1.weight", "rebnconv1d.bn_s1.bias", "rebnconv1d.bn_s1.running_mean", "rebnconv1d.bn_s1.running_var", "rebnconv1d.bn_s1.num_batches_tracked", ".rebnconvin.conv_s1.weight", ".rebnconvin.conv_s1.bias", ".rebnconvin.bn_s1.weight", ".rebnconvin.bn_s1.bias", ".rebnconvin.bn_s1.running_mean", ".rebnconvin.bn_s1.running_var", ".rebnconvin.bn_s1.num_batches_tracked", ".rebnconv1.conv_s1.weight", ".rebnconv1.conv_s1.bias", ".rebnconv1.bn_s1.weight", ".rebnconv1.bn_s1.bias", ".rebnconv1.bn_s1.running_mean", ".rebnconv1.bn_s1.running.weight", ".rebnconv2.bn_s1.bias", ".rebnconv2.bn_s1.running_mean", ".rebnconv2.bn_s1.running_var", ".rebnconv2.bn_s1.num_batches_tracked", ".rebnconv3.conv_s1.weight", ".rebnconv3.conv_s1.bias", ".rebnconv3.bn_s1.weight", ".rebnconv3.bn_s1.bias", ".rebnconv3.bn_s1.running_mean", ".rebnconv3.bn_s1.running_var", ".rebnconv3.bn_s1.num_batches_tracked", ".rebnconv4.conv_s1.weight", ".rebnconv4.conv_s1.bias", ".rebnconv4.bn_s1.weight", ".rebnconv4.bn_s1.bias", ".rebnconv4.bn_s1.running_mean", ".rebnconv4.bn_s1.running_var", ".rebnconv4.bn_s1.num_batches_tracked", ".rebnconv3d.conv_s1.weight", ".rebnconv3d.conv_s1.bias", ".rebnconv3d.bn_s1.weight", ".rebnconv3d.bn_s1.bias", ".rebnconv3d.bn_s1.running_mean", ".rebnconv3d.bn_s1.running_var", ".rebnconv3d.bn_s1.num_batches_tracked", ".rebnconv2d.conv_s1.weight", ".rebnconv2d.conv_s1.bias", ".rebnconv2d.bn_s1.weight", ".rebnconv2d.bn_s1.bias", ".rebnconv2d.bn_s1.running_mean", ".rebnconv2d.bn_s1.running_var", ".rebnconv2d.bn_s1.num_batches_tracked", ".rebnconv1d.conv_s1.weight", ".rebnconv1d.conv_s1.bias", ".rebnconv1d.bn_s1.weight", ".rebnconv1d.bn_s1.bias", ".rebnconv1d.bn_s1.running_mean", ".rebnconv1d.bn_s1.running_var", ".rebnconv1d.bn_s1.num_batches_tracked", ".rebnconv5.conv_s1.weight", ".rebnconv5.conv_s1.bias", ".rebnconv5.bn_s1.weight", ".rebnconv5.bn_s1.bias", ".rebnconv5.bn_s1.running_mean", ".rebnconv5.bn_s1.running_var", ".rebnconv5.bn_s1.num_batches_tracked", ".rebnconv4d.conv_s1.weight", ".rebnconv4d.conv_s1.bias", ".rebnconv4d.bn_s1.weight", ".rebnconv4d.bn_s1.bias", ".rebnconv4d.bn_s1.running_mean", ".rebnconv4d.bn_s1.running_var", ".rebnconv4d.bn_s1.num_batches_tracked", ".rebnconv6.conv_s1.weight", ".rebnconv6.conv_s1.bias", ".rebnconv6.bn_s1.weight", ".rebnconv6.bn_s1.bias", ".rebnconv6.bn_s1.running_mean", ".rebnconv6.bn_s1.running_var", ".rebnconv6.bn_s1.num_batches_tracked", ".rebnconv5d.conv_s1.weight", ".rebnconv5d.conv_s1.bias", ".rebnconv5d.bn_s1.weight", ".rebnconv5d.bn_s1.bias", ".rebnconv5d.bn_s1.running_mean", ".rebnconv5d.bn_s1.running_var", ".rebnconv5d.bn_s1.num_batches_tracked", ".rebnconv7.conv_s1.weight", ".rebnconv7.conv_s1.bias", ".rebnconv7.bn_s1.weight", ".rebnconv7.bn_s1.bias", ".rebnconv7.bn_s1.running_mean", ".rebnconv7.bn_s1.running_var", ".rebnconv7.bn_s1.num_batches_tracked", ".rebnconv6d.conv_s1.weight", ".rebnconv6d.conv_s1.bias", ".rebnconv6d.bn_s1.weight", ".rebnconv6d.bn_s1.bias", ".rebnconv6d.bn_s1.running_mean", ".rebnconv6d.bn_s1.running_var", ".rebnconv6d.bn_s1.num_batches_tracked", "eight", "ias", ".weight", ".bias".

Model can be loaded only with strict=False: model.load_state_dict(new_state_dict, strict=False)

What could be the reason for it?

Hi @Antonytm,

The reason behind this the number of layers/parameters in the cloth segmentation model and the pretrained model being used to train the Cloth Seg model is different. So to initialize weights for the matching layers, models are loaded with "strict=False".
You can verify that by checking the architecture of cloth Seg model (modifies U2Net) and pretrained model used to train cloth seg model.

@Antonytm
Copy link

@wildoctopus

Sorry, I am a newbie in ML.
Any ideas, why I get the wrong model architecture? And how to troubleshoot it?

I do the next steps:

  1. Download training data from Kaggle kaggle competitions download -c imaterialist-fashion-2019-FGVC6 https://www.kaggle.com/c/imaterialist-fashion-2019-FGVC6/data
  2. Update options/base_options.py: set paths from step 1
  3. Run python model_surgery.py (Readme sayspython setup_model_weights.py`, but that file is absent)
  4. Verify, that cloth_segm_unet_surgery.pth file was created
  5. Run python train.py

Is anything missed? Is anything wrong?

P.S. Your pre-trained model from Hugging Face works fine. However, I want to try using this approach for the segmentation of different objects(not clothes). And, first of all, I want to repeat all steps to be able to build the original model.

@Antonytm
Copy link

I printed my model and pre-trained, they are exactly the same:

U2NET(
  (stage1): RSU7(
    (rebnconvin): REBNCONV(
      (conv_s1): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn_s1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (rebnconv1): REBNCONV(
      (conv_s1): Conv2d(64, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn_s1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (pool1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=True)
    (rebnconv2): REBNCONV(
      (conv_s1): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn_s1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (pool2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=True)
    (rebnconv3): REBNCONV(
      (conv_s1): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn_s1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (pool3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=True)
    (rebnconv4): REBNCONV(
      (conv_s1): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn_s1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (pool4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=True)
    (rebnconv5): REBNCONV(
      (conv_s1): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn_s1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (pool5): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=True)
    (rebnconv6): REBNCONV(
      (conv_s1): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn_s1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (rebnconv7): REBNCONV(
      (conv_s1): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2))
      (bn_s1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (rebnconv6d): REBNCONV(
      (conv_s1): Conv2d(64, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn_s1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (rebnconv5d): REBNCONV(
      (conv_s1): Conv2d(64, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn_s1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (rebnconv4d): REBNCONV(
      (conv_s1): Conv2d(64, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn_s1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (rebnconv3d): REBNCONV(
      (conv_s1): Conv2d(64, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn_s1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (rebnconv2d): REBNCONV(
      (conv_s1): Conv2d(64, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn_s1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (rebnconv1d): REBNCONV(
      (conv_s1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn_s1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
  )
  (pool12): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=True)
  (stage2): RSU6(
    (rebnconvin): REBNCONV(
      (conv_s1): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn_s1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (rebnconv1): REBNCONV(
      (conv_s1): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn_s1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (pool1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=True)
    (rebnconv2): REBNCONV(
      (conv_s1): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn_s1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (pool2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=True)
    (rebnconv3): REBNCONV(
      (conv_s1): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn_s1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (pool3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=True)
    (rebnconv4): REBNCONV(
      (conv_s1): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn_s1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (pool4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=True)
    (rebnconv5): REBNCONV(
      (conv_s1): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn_s1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (rebnconv6): REBNCONV(
      (conv_s1): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2))
      (bn_s1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (rebnconv5d): REBNCONV(
      (conv_s1): Conv2d(64, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn_s1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (rebnconv4d): REBNCONV(
      (conv_s1): Conv2d(64, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn_s1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (rebnconv3d): REBNCONV(
      (conv_s1): Conv2d(64, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn_s1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (rebnconv2d): REBNCONV(
      (conv_s1): Conv2d(64, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn_s1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (rebnconv1d): REBNCONV(
      (conv_s1): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn_s1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
  )
  (pool23): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=True)
  (stage3): RSU5(
    (rebnconvin): REBNCONV(
      (conv_s1): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn_s1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (rebnconv1): REBNCONV(
      (conv_s1): Conv2d(256, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn_s1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (pool1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=True)
    (rebnconv2): REBNCONV(
      (conv_s1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn_s1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (pool2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=True)
    (rebnconv3): REBNCONV(
      (conv_s1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn_s1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (pool3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=True)
    (rebnconv4): REBNCONV(
      (conv_s1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn_s1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (rebnconv5): REBNCONV(
      (conv_s1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2))
      (bn_s1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (rebnconv4d): REBNCONV(
      (conv_s1): Conv2d(128, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn_s1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (rebnconv3d): REBNCONV(
      (conv_s1): Conv2d(128, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn_s1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (rebnconv2d): REBNCONV(
      (conv_s1): Conv2d(128, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn_s1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (rebnconv1d): REBNCONV(
      (conv_s1): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn_s1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
  )
  (pool34): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=True)
  (stage4): RSU4(
    (rebnconvin): REBNCONV(
      (conv_s1): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn_s1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (rebnconv1): REBNCONV(
      (conv_s1): Conv2d(512, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn_s1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (pool1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=True)
    (rebnconv2): REBNCONV(
      (conv_s1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn_s1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (pool2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=True)
    (rebnconv3): REBNCONV(
      (conv_s1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn_s1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (rebnconv4): REBNCONV(
      (conv_s1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2))
      (bn_s1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (rebnconv3d): REBNCONV(
      (conv_s1): Conv2d(256, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn_s1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (rebnconv2d): REBNCONV(
      (conv_s1): Conv2d(256, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn_s1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (rebnconv1d): REBNCONV(
      (conv_s1): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn_s1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
  )
  (pool45): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=True)
  (stage5): RSU4F(
    (rebnconvin): REBNCONV(
      (conv_s1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn_s1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (rebnconv1): REBNCONV(
      (conv_s1): Conv2d(512, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn_s1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (rebnconv2): REBNCONV(
      (conv_s1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2))
      (bn_s1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (rebnconv3): REBNCONV(
      (conv_s1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(4, 4), dilation=(4, 4))
      (bn_s1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (rebnconv4): REBNCONV(
      (conv_s1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(8, 8), dilation=(8, 8))
      (bn_s1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (rebnconv3d): REBNCONV(
      (conv_s1): Conv2d(512, 256, kernel_size=(3, 3), stride=(1, 1), padding=(4, 4), dilation=(4, 4))
      (bn_s1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (rebnconv2d): REBNCONV(
      (conv_s1): Conv2d(512, 256, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2))
      (bn_s1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (rebnconv1d): REBNCONV(
      (conv_s1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn_s1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
  )
  (pool56): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=True)
  (stage6): RSU4F(
    (rebnconvin): REBNCONV(
      (conv_s1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn_s1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (rebnconv1): REBNCONV(
      (conv_s1): Conv2d(512, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn_s1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (rebnconv2): REBNCONV(
      (conv_s1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2))
      (bn_s1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (rebnconv3): REBNCONV(
      (conv_s1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(4, 4), dilation=(4, 4))
      (bn_s1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (rebnconv4): REBNCONV(
      (conv_s1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(8, 8), dilation=(8, 8))
      (bn_s1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (rebnconv3d): REBNCONV(
      (conv_s1): Conv2d(512, 256, kernel_size=(3, 3), stride=(1, 1), padding=(4, 4), dilation=(4, 4))
      (bn_s1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (rebnconv2d): REBNCONV(
      (conv_s1): Conv2d(512, 256, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2))
      (bn_s1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (rebnconv1d): REBNCONV(
      (conv_s1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn_s1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
  )
  (stage5d): RSU4F(
    (rebnconvin): REBNCONV(
      (conv_s1): Conv2d(1024, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn_s1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (rebnconv1): REBNCONV(
      (conv_s1): Conv2d(512, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn_s1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (rebnconv2): REBNCONV(
      (conv_s1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2))
      (bn_s1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (rebnconv3): REBNCONV(
      (conv_s1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(4, 4), dilation=(4, 4))
      (bn_s1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (rebnconv4): REBNCONV(
      (conv_s1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(8, 8), dilation=(8, 8))
      (bn_s1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (rebnconv3d): REBNCONV(
      (conv_s1): Conv2d(512, 256, kernel_size=(3, 3), stride=(1, 1), padding=(4, 4), dilation=(4, 4))
      (bn_s1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (rebnconv2d): REBNCONV(
      (conv_s1): Conv2d(512, 256, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2))
      (bn_s1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (rebnconv1d): REBNCONV(
      (conv_s1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn_s1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
  )
  (stage4d): RSU4(
    (rebnconvin): REBNCONV(
      (conv_s1): Conv2d(1024, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn_s1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (rebnconv1): REBNCONV(
      (conv_s1): Conv2d(256, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn_s1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (pool1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=True)
    (rebnconv2): REBNCONV(
      (conv_s1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn_s1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (pool2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=True)
    (rebnconv3): REBNCONV(
      (conv_s1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn_s1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (rebnconv4): REBNCONV(
      (conv_s1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2))
      (bn_s1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (rebnconv3d): REBNCONV(
      (conv_s1): Conv2d(256, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn_s1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (rebnconv2d): REBNCONV(
      (conv_s1): Conv2d(256, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn_s1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (rebnconv1d): REBNCONV(
      (conv_s1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn_s1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
  )
  (stage3d): RSU5(
    (rebnconvin): REBNCONV(
      (conv_s1): Conv2d(512, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn_s1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (rebnconv1): REBNCONV(
      (conv_s1): Conv2d(128, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn_s1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (pool1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=True)
    (rebnconv2): REBNCONV(
      (conv_s1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn_s1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (pool2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=True)
    (rebnconv3): REBNCONV(
      (conv_s1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn_s1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (pool3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=True)
    (rebnconv4): REBNCONV(
      (conv_s1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn_s1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (rebnconv5): REBNCONV(
      (conv_s1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2))
      (bn_s1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (rebnconv4d): REBNCONV(
      (conv_s1): Conv2d(128, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn_s1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (rebnconv3d): REBNCONV(
      (conv_s1): Conv2d(128, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn_s1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (rebnconv2d): REBNCONV(
      (conv_s1): Conv2d(128, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn_s1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (rebnconv1d): REBNCONV(
      (conv_s1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn_s1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
  )
  (stage2d): RSU6(
    (rebnconvin): REBNCONV(
      (conv_s1): Conv2d(256, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn_s1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (rebnconv1): REBNCONV(
      (conv_s1): Conv2d(64, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn_s1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (pool1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=True)
    (rebnconv2): REBNCONV(
      (conv_s1): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn_s1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (pool2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=True)
    (rebnconv3): REBNCONV(
      (conv_s1): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn_s1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (pool3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=True)
    (rebnconv4): REBNCONV(
      (conv_s1): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn_s1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (pool4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=True)
    (rebnconv5): REBNCONV(
      (conv_s1): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn_s1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (rebnconv6): REBNCONV(
      (conv_s1): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2))
      (bn_s1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (rebnconv5d): REBNCONV(
      (conv_s1): Conv2d(64, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn_s1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (rebnconv4d): REBNCONV(
      (conv_s1): Conv2d(64, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn_s1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (rebnconv3d): REBNCONV(
      (conv_s1): Conv2d(64, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn_s1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (rebnconv2d): REBNCONV(
      (conv_s1): Conv2d(64, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn_s1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (rebnconv1d): REBNCONV(
      (conv_s1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn_s1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
  )
  (stage1d): RSU7(
    (rebnconvin): REBNCONV(
      (conv_s1): Conv2d(128, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn_s1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (rebnconv1): REBNCONV(
      (conv_s1): Conv2d(64, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn_s1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (pool1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=True)
    (rebnconv2): REBNCONV(
      (conv_s1): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn_s1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (pool2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=True)
    (rebnconv3): REBNCONV(
      (conv_s1): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn_s1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (pool3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=True)
    (rebnconv4): REBNCONV(
      (conv_s1): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn_s1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (pool4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=True)
    (rebnconv5): REBNCONV(
      (conv_s1): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn_s1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (pool5): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=True)
    (rebnconv6): REBNCONV(
      (conv_s1): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn_s1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (rebnconv7): REBNCONV(
      (conv_s1): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2))
      (bn_s1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (rebnconv6d): REBNCONV(
      (conv_s1): Conv2d(32, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn_s1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (rebnconv5d): REBNCONV(
      (conv_s1): Conv2d(32, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn_s1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (rebnconv4d): REBNCONV(
      (conv_s1): Conv2d(32, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn_s1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (rebnconv3d): REBNCONV(
      (conv_s1): Conv2d(32, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn_s1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (rebnconv2d): REBNCONV(
      (conv_s1): Conv2d(32, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn_s1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
    (rebnconv1d): REBNCONV(
      (conv_s1): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn_s1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu_s1): ReLU(inplace=True)
    )
  )
  (side1): Conv2d(64, 4, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (side2): Conv2d(64, 4, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (side3): Conv2d(128, 4, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (side4): Conv2d(256, 4, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (side5): Conv2d(512, 4, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (side6): Conv2d(512, 4, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (outconv): Conv2d(24, 4, kernel_size=(1, 1), stride=(1, 1))
)

@wildoctopus
Copy link

@wildoctopus

Sorry, I am a newbie in ML. Any ideas, why I get the wrong model architecture? And how to troubleshoot it?

I do the next steps:

  1. Download training data from Kaggle kaggle competitions download -c imaterialist-fashion-2019-FGVC6 https://www.kaggle.com/c/imaterialist-fashion-2019-FGVC6/data
  2. Update options/base_options.py: set paths from step 1
  3. Run python model_surgery.py (Readme sayspython setup_model_weights.py`, but that file is absent)
  4. Verify, that cloth_segm_unet_surgery.pth file was created
  5. Run python train.py

Is anything missed? Is anything wrong?

P.S. Your pre-trained model from Hugging Face works fine. However, I want to try using this approach for the segmentation of different objects(not clothes). And, first of all, I want to repeat all steps to be able to build the original model.

Hi @Antonytm ,

You are following the correct steps. Can you please check your base otions settings.
In original base_settings file just update these two fields -
self.image_folder = "../imaterialist/train/" # image folder path
self.df_path = "../imaterialist/train.csv" # label csv path

Run the model surgery and run train. It should work. No other settings needs to be modified to run successfully in default case.
Check this colab link - https://colab.research.google.com/drive/1TWmHQwZtXQVwqLAK2nUjnhys6uU-uyyt?usp=sharing

Let me know if you still facing any issue.

And when you try to run for custom dataset and problem , changes will be needed based on the out channel, so those needful changes in Model_surgery file as well.

@Antonytm
Copy link

Antonytm commented Dec 8, 2023

@wildoctopus
After a few weeks I back to this issue.
And I still have the same.

@shryzium
Copy link

@wildoctopus

hello Alok ,
How i can finetune the model using HuggingFace pretrained checkpoint

@Kaustubh-cpu
Copy link

Kaustubh-cpu commented Feb 20, 2024

I have exactly the same issue. Pre-trained mode from Hugging Face works OK. The model that is trained using instructions fails.

RuntimeError: Error(s) in loading state_dict for U2NET:
        Missing key(s) in state_dict: "stage1.rebnconvin.conv_s1.weight", "stage1.rebnconvin.conv_s1.bias", "stage1.rebnconvin.bn_s1.weight", "stage1.rebnconvin.bn_s1.bias", "stage1.rebnconvin.bn_s1.running_mean", "stage1.rebnconvin.bn_s1.running_var", "stage1.rebnconv1.conv_s1.weight", "stage1.rebnconv1.conv_s1.bias", "stage1.rebnconv1.bn_s1.weight", "stage1.rebnconv1.bn_s1.bias", "stage1.rebnconv1.bn_s1.running_mean", "stage1.rebnconv1.bn_s1.running_var", "stage1.rebnconv2.conv_s1.weight", "stage1.rebnconv2.conv_s1.bias", "stage1.rebnconv2.bn_s1.weight", "stage1.rebnconv2.bn_s1.bias", "stage1.rebnconv2.bn_s1.running_mean", "stage1.rebnconv2.bn_s1.running_var", "stage1.rebnconv3.conv_s1.weight", "stage1.rebnconv3.conv_s1.bias", "stage1.rebnconv3.bn_s1.weight", "stage1.rebnconv3.bn_s1.bias", "stage1.rebnconv3.bn_s1.running_mean", "stage1.rebnconv3.bn_s1.running_var", "stage1.rebnconv4.conv_s1.weight", "stage1.rebnconv4.conv_s1.bias", "stage1.rebnconv4.bn_s1.weight", "stage1.rebnconv4.bn_s1.bias", "stage1.rebnconv4.bn_s1.running_mean", "stage1.rebnconv4.bn_s1.running_var", "stage1.rebnconv5.conv_s1.weight", "stage1.rebnconv5.conv_s1.bias", "stage1.rebnconv5.bn_s1.weight", "stage1.rebnconv5.bn_s1.bias", "stage1.rebnconv5.bn_s1.running_mean", "stage1.rebnconv5.bn_s1.running_var", "stage1.rebnconv6.conv_s1.weight", "stage1.rebnconv6.conv_s1.bias", "stage1.rebnconv6.bn_s1.weight", "stage1.rebnconv6.bn_s1.bias", "stage1.rebnconv6.bn_s1.running_mean", "stage1.rebnconv6.bn_s1.running_var", "stage1.rebnconv7.conv_s1.weight", "stage1.rebnconv7.conv_s1.bias", "stage1.rebnconv7.bn_s1.weight", "stage1.rebnconv7.bn_s1.bias", "stage1.rebnconv7.bn_s1.running_mean", "stage1.rebnconv7.bn_s1.running_var", "stage1.rebnconv6d.conv_s1.weight", "stage1.rebnconv6d.conv_s1.bias", "stage1.rebnconv6d.bn_s1.weight", "stage1.rebnconv6d.bn_s1.bias", "stage1.rebnconv6d.bn_s1.running_mean", "stage1.rebnconv6d.bn_s1.running_var", "stage1.rebnconv5d.conv_s1.weight", "stage1.rebnconv5d.conv_s1.bias", "stage1.rebnconv5d.bn_s1.weight", "stage1.rebnconv5d.bn_s1.bias", "stage1.rebnconv5d.bn_s1.running_mean", "stage1.rebnconv5d.bn_s1.running_var", "stage1.rebnconv4d.conv_s1.weight", "stage1.rebnconv4d.conv_s1.bias", "stage1.rebnconv4d.bn_s1.weight", "stage1.rebnconv4d.bn_s1.bias", "stage1.rebnconv4d.bn_s1.running_mean", "stage1.rebnconv4d.bn_s1.running_var", "stage1.rebnconv3d.conv_s1.weight", "stage1.rebnconv3d.conv_s1.bias", "stage1.rebnconv3d.bn_s1.weight", "stage1.rebnconv3d.bn_s1.bias", "stage1.rebnconv3d.bn_s1.running_mean", "stage1.rebnconv3d.bn_s1.running_var", "stage1.rebnconv2d.conv_s1.weight", "stage1.rebnconv2d.conv_s1.bias", "stage1.rebnconv2d.bn_s1.weight", "stage1.rebnconv2d.bn_s1.bias", "stage1.rebnconv2d.bn_s1.running_mean", "stage1.rebnconv2d.bn_s1.running_var", "stage1.rebnconv1d.conv_s1.weight", "stage1.rebnconv1d.conv_s1.bias", "stage1.rebnconv1d.bn_s1.weight", "stage1.rebnconv1d.bn_s1.bias", "stage1.rebnconv1d.bn_s1.running_mean", "stage1.rebnconv1d.bn_s1.running_var", "stage2.rebnconvin.conv_s1.weight", "stage2.rebnconvin.conv_s1.bias", "stage2.rebnconvin.bn_s1.weight", "stage2.rebnconvin.bn_s1.bias", "stage2.rebnconvin.bn_s1.running_mean", "stage2.rebnconvin.bn_s1.running_var", "stage2.rebnconv1.conv_s1.weight", "stage2.rebnconv1.conv_s1.bias", "stage2.rebnconv1.bn_s1.weight", "stage2.rebnconv1.bn_s1.bias", "stage2.rebnconv1.bn_s1.running_mean", "stage2.rebnconv1.bn_s1.running_var", "stage2.rebnconv2.conv_s1.weight", "stage2.rebnconv2.conv_s1.bias", "stage2.rebnconv2.bn_s1.weight", "stage2.rebnconv2.bn_s1.bias", "stage2.rebnconv2.bn_s1.running_mean", "stage2.rebnconv2.bn_s1.running_var", "stage2.rebnconv3.conv_s1.weight", "stage2.rebnconv3.conv_s1.bias", "stage2.rebnconv3.bn_s1.weight", "stage2.rebnconv3.bn_s1.bias", "stage2.rebnconv3.bn_s1.running_mean", "stage2.rebnconv3.bn_s1.running_var", "stage2.rebnconv4.conv_s1.weight", "stage2.rebnconv4.conv_s1.bias", "stage2.rebnconv4.bn_s1.weight", "stage2.rebnconv4.bn_s1.bias", "stage2.rebnconv4.bn_s1.running_mean", "stage2.rebnconv4.bn_s1.running_var", "stage2.rebnconv5.conv_s1.weight", "stage2.rebnconv5.conv_s1.bias", "stage2.rebnconv5.bn_s1.weight", "stage2.rebnconv5.bn_s1.bias", "stage2.rebnconv5.bn_s1.running_mean", "stage2.rebnconv5.bn_s1.running_var", "stage2.rebnconv6.conv_s1.weight", "stage2.rebnconv6.conv_s1.bias", "stage2.rebnconv6.bn_s1.weight", "stage2.rebnconv6.bn_s1.bias", "stage2.rebnconv6.bn_s1.running_mean", "stage2.rebnconv6.bn_s1.running_var", "stage2.rebnconv5d.conv_s1.weight", "stage2.rebnconv5d.conv_s1.bias", "stage2.rebnconv5d.bn_s1.weight", "stage2.rebnconv5d.bn_s1.bias", "stage2.rebnconv5d.bn_s1.running_mean", "stage2.rebnconv5d.bn_s1.running_var", "stage2.rebnconv4d.conv_s1.weight", "stage2.rebnconv4d.conv_s1.bias", "stage2.rebnconv4d.bn_s1.weight", "stage2.rebnconv4d.bn_s1.bias", "stage2.rebnconv4d.bn_s1.running_mean", "stage2.rebnconv4d.bn_s1.running_var", "stage2.rebnconv3d.conv_s1.weight", "stage2.rebnconv3d.conv_s1.bias", "stage2.rebnconv3d.bn_s1.weight", "stage2.rebnconv3d.bn_s1.bias", "stage2.rebnconv3d.bn_s1.running_mean", "stage2.rebnconv3d.bn_s1.running_var", "stage2.rebnconv2d.conv_s1.weight", "stage2.rebnconv2d.conv_s1.bias", "stage2.rebnconv2d.bn_s1.weight", "stage2.rebnconv2d.bn_s1.bias", "stage2.rebnconv2d.bn_s1.running_mean", "stage2.rebnconv2d.bn_s1.running_var", "stage2.rebnconv1d.conv_s1.weight", "stage2.rebnconv1d.conv_s1.bias", "stage2.rebnconv1d.bn_s1.weight", "stage2.rebnconv1d.bn_s1.bias", "stage2.rebnconv1d.bn_s1.running_mean", "stage2.rebnconv1d.bn_s1.running_var", "stage3.rebnconvin.conv_s1.weight", "stage3.rebnconvin.conv_s1.bias", "stage3.rebnconvin.bn_s1.weight", "stage3.rebnconvin.bn_s1.bias", "stage3.rebnconvin.bn_s1.running_mean", "stage3.rebnconvin.bn_s1.running_var", "stage3.rebnconv1.conv_s1.weight", "stage3.rebnconv1.conv_s1.bias", "stage3.rebnconv1.bn_s1.weight", "stage3.rebnconv1.bn_s1.bias", "stage3.rebnconv1.bn_s1.running_mean", "stage3.rebnconv1.bn_s1.running_var", "stage3.rebnconv2.conv_s1.weight", "stage3.rebnconv2.conv_s1.bias", "stage3.rebnconv2.bn_s1.weight", "stage3.rebnconv2.bn_s1.bias", "stage3.rebnconv2.bn_s1.running_mean", "stage3.rebnconv2.bn_s1.running_var", "stage3.rebnconv3.conv_s1.weight", "stage3.rebnconv3.conv_s1.bias", "stage3.rebnconv3.bn_s1.weight", "stage3.rebnconv3.bn_s1.bias", "stage3.rebnconv3.bn_s1.running_mean", "stage3.rebnconv3.bn_s1.running_var", "stage3.rebnconv4.conv_s1.weight", "stage3.rebnconv4.conv_s1.bias", "stage3.rebnconv4.bn_s1.weight", "stage3.rebnconv4.bn_s1.bias", "stage3.rebnconv4.bn_s1.running_mean", "stage3.rebnconv4.bn_s1.running_var", "stage3.rebnconv5.conv_s1.weight", "stage3.rebnconv5.conv_s1.bias", "stage3.rebnconv5.bn_s1.weight", "stage3.rebnconv5.bn_s1.bias", "stage3.rebnconv5.bn_s1.running_mean", "stage3.rebnconv5.bn_s1.running_var", "stage3.rebnconv4d.conv_s1.weight", "stage3.rebnconv4d.conv_s1.bias", "stage3.rebnconv4d.bn_s1.weight", "stage3.rebnconv4d.bn_s1.bias", "stage3.rebnconv4d.bn_s1.running_mean", "stage3.rebnconv4d.bn_s1.running_var", "stage3.rebnconv3d.conv_s1.weight", "stage3.rebnconv3d.conv_s1.bias", "stage3.rebnconv3d.bn_s1.weight", "stage3.rebnconv3d.bn_s1.bias", "stage3.rebnconv3d.bn_s1.running_mean", "stage3.rebnconv3d.bn_s1.running_var", "stage3.rebnconv2d.conv_s1.weight", "stage3.rebnconv2d.conv_s1.bias", "stage3.rebnconv2d.bn_s1.weight", "stage3.rebnconv2d.bn_s1.bias", "stage3.rebnconv2d.bn_s1.running_mean", "stage3.rebnconv2d.bn_s1.running_var", "stage3.rebnconv1d.conv_s1.weight", "stage3.rebnconv1d.conv_s1.bias", "stage3.rebnconv1d.bn_s1.weight", "stage3.rebnconv1d.bn_s1.bias", "stage3.rebnconv1d.bn_s1.running_mean", "stage3.rebnconv1d.bn_s1.running_var", "stage4.rebnconvin.conv_s1.weight", "stage4.rebnconvin.conv_s1.bias", "stage4.rebnconvin.bn_s1.weight", "stage4.rebnconvin.bn_s1.bias", "stage4.rebnconvin.bn_s1.running_mean", "stage4.rebnconvin.bn_s1.running_var", "stage4.rebnconv1.conv_s1.weight", "stage4.rebnconv1.conv_s1.bias", "stage4.rebnconv1.bn_s1.weight", "stage4.rebnconv1.bn_s1.bias", "stage4.rebnconv1.bn_s1.running_mean", "stage4.rebnconv1.bn_s1.running_var", "stage4.rebnconv2.conv_s1.weight", "stage4.rebnconv2.conv_s1.bias", "stage4.rebnconv2.bn_s1.weight", "stage4.rebnconv2.bn_s1.bias", "stage4.rebnconv2.bn_s1.running_mean", "stage4.rebnconv2.bn_s1.running_var", "stage4.rebnconv3.conv_s1.weight", "stage4.rebnconv3.conv_s1.bias", "stage4.rebnconv3.bn_s1.weight", "stage4.rebnconv3.bn_s1.bias", "stage4.rebnconv3.bn_s1.running_mean", "stage4.rebnconv3.bn_s1.running_var", "stage4.rebnconv4.conv_s1.weight", "stage4.rebnconv4.conv_s1.bias", "stage4.rebnconv4.bn_s1.weight", "stage4.rebnconv4.bn_s1.bias", "stage4.rebnconv4.bn_s1.running_mean", "stage4.rebnconv4.bn_s1.running_var", "stage4.rebnconv3d.conv_s1.weight", "stage4.rebnconv3d.conv_s1.bias", "stage4.rebnconv3d.bn_s1.weight", "stage4.rebnconv3d.bn_s1.bias", "stage4.rebnconv3d.bn_s1.running_mean", "stage4.rebnconv3d.bn_s1.running_var", "stage4.rebnconv2d.conv_s1.weight", "stage4.rebnconv2d.conv_s1.bias", "stage4.rebnconv2d.bn_s1.weight", "stage4.rebnconv2d.bn_s1.bias", "stage4.rebnconv2d.bn_s1.running_mean", "stage4.rebnconv2d.bn_s1.running_var", "stage4.rebnconv1d.conv_s1.weight", "stage4.rebnconv1d.conv_s1.bias", "stage4.rebnconv1d.bn_s1.weight", "stage4.rebnconv1d.bn_s1.bias", "stage4.rebnconv1d.bn_s1.running_mean", "stage4.rebnconv1d.bn_s1.running_var", "stage5.rebnconvin.conv_s1.weight", "stage5.rebnconvin.conv_s1.bias", "stage5.rebnconvin.bn_s1.weight", "stage5.rebnconvin.bn_s1.bias", "stage5.rebnconvin.bn_s1.running_mean", "stage5.rebnconvin.bn_s1.running_var", "stage5.rebnconv1.conv_s1.weight", "stage5.rebnconv1.conv_s1.bias", "stage5.rebnconv1.bn_s1.weight", "stage5.rebnconv1.bn_s1.bias", "stage5.rebnconv1.bn_s1.running_mean", "stage5.rebnconv1.bn_s1.running_var", "stage5.rebnconv2.conv_s1.weight", "stage5.rebnconv2.conv_s1.bias", "stage5.rebnconv2.bn_s1.weight", "stage5.rebnconv2.bn_s1.bias", "stage5.rebnconv2.bn_s1.running_mean", "stage5.rebnconv2.bn_s1.running_var", "stage5.rebnconv3.conv_s1.weight", "stage5.rebnconv3.conv_s1.bias", "stage5.rebnconv3.bn_s1.weight", "stage5.rebnconv3.bn_s1.bias", "stage5.rebnconv3.bn_s1.running_mean", "stage5.rebnconv3.bn_s1.running_var", "stage5.rebnconv4.conv_s1.weight", "stage5.rebnconv4.conv_s1.bias", "stage5.rebnconv4.bn_s1.weight", "stage5.rebnconv4.bn_s1.bias", "stage5.rebnconv4.bn_s1.running_mean", "stage5.rebnconv4.bn_s1.running_var", "stage5.rebnconv3d.conv_s1.weight", "stage5.rebnconv3d.conv_s1.bias", "stage5.rebnconv3d.bn_s1.weight", "stage5.rebnconv3d.bn_s1.bias", "stage5.rebnconv3d.bn_s1.running_mean", "stage5.rebnconv3d.bn_s1.running_var", "stage5.rebnconv2d.conv_s1.weight", "stage5.rebnconv2d.conv_s1.bias", "stage5.rebnconv2d.bn_s1.weight", "stage5.rebnconv2d.bn_s1.bias", "stage5.rebnconv2d.bn_s1.running_mean", "stage5.rebnconv2d.bn_s1.running_var", "stage5.rebnconv1d.conv_s1.weight", "stage5.rebnconv1d.conv_s1.bias", "stage5.rebnconv1d.bn_s1.weight", "stage5.rebnconv1d.bn_s1.bias", "stage5.rebnconv1d.bn_s1.running_mean", "stage5.rebnconv1d.bn_s1.running_var", "stage6.rebnconvin.conv_s1.weight", "stage6.rebnconvin.conv_s1.bias", "stage6.rebnconvin.bn_s1.weight", "stage6.rebnconvin.bn_s1.bias", "stage6.rebnconvin.bn_s1.running_mean", "stage6.rebnconvin.bn_s1.running_var", "stage6.rebnconv1.conv_s1.weight", "stage6.rebnconv1.conv_s1.bias", "stage6.rebnconv1.bn_s1.weight", "stage6.rebnconv1.bn_s1.bias", "stage6.rebnconv1.bn_s1.running_mean", "stage6.rebnconv1.bn_s1.running_var", "stage6.rebnconv2.conv_s1.weight", "stage6.rebnconv2.conv_s1.bias", "stage6.rebnconv2.bn_s1.weight", "stage6.rebnconv2.bn_s1.bias", "stage6.rebnconv2.bn_s1.running_mean", "stage6.rebnconv2.bn_s1.running_var", "stage6.rebnconv3.conv_s1.weight", "stage6.rebnconv3.conv_s1.bias", "stage6.rebnconv3.bn_s1.weight", "stage6.rebnconv3.bn_s1.bias", "stage6.rebnconv3.bn_s1.running_mean", "stage6.rebnconv3.bn_s1.running_var", "stage6.rebnconv4.conv_s1.weight", "stage6.rebnconv4.conv_s1.bias", "stage6.rebnconv4.bn_s1.weight", "stage6.rebnconv4.bn_s1.bias", "stage6.rebnconv4.bn_s1.running_mean", "stage6.rebnconv4.bn_s1.running_var", "stage6.rebnconv3d.conv_s1.weight", "stage6.rebnconv3d.conv_s1.bias", "stage6.rebnconv3d.bn_s1.weight", "stage6.rebnconv3d.bn_s1.bias", "stage6.rebnconv3d.bn_s1.running_mean", "stage6.rebnconv3d.bn_s1.running_var", "stage6.rebnconv2d.conv_s1.weight", "stage6.rebnconv2d.conv_s1.bias", "stage6.rebnconv2d.bn_s1.weight", "stage6.rebnconv2d.bn_s1.bias", "stage6.rebnconv2d.bn_s1.running_mean", "stage6.rebnconv2d.bn_s1.running_var", "stage6.rebnconv1d.conv_s1.weight", "stage6.rebnconv1d.conv_s1.bias", "stage6.rebnconv1d.bn_s1.weight", "stage6.rebnconv1d.bn_s1.bias", "stage6.rebnconv1d.bn_s1.running_mean", "stage6.rebnconv1d.bn_s1.running_var", "stage5d.rebnconvin.conv_s1.weight", "stage5d.rebnconvin.conv_s1.bias", "stage5d.rebnconvin.bn_s1.weight", "stage5d.rebnconvin.bn_s1.bias", "stage5d.rebnconvin.bn_s1.running_mean", "stage5d.rebnconvin.bn_s1.running_var", "stage5d.rebnconv1.conv_s1.weight", "stage5d.rebnconv1.conv_s1.bias", "stage5d.rebnconv1.bn_s1.weight", "stage5d.rebnconv1.bn_s1.bias", "stage5d.rebnconv1.bn_s1.running_mean", "stage5d.rebnconv1.bn_s1.running_var", "stage5d.rebnconv2.conv_s1.weight", "stage5d.rebnconv2.conv_s1.bias", "stage5d.rebnconv2.bn_s1.weight", "stage5d.rebnconv2.bn_s1.bias", "stage5d.rebnconv2.bn_s1.running_mean", "stage5d.rebnconv2.bn_s1.running_var", "stage5d.rebnconv3.conv_s1.weight", "stage5d.rebnconv3.conv_s1.bias", "stage5d.rebnconv3.bn_s1.weight", "stage5d.rebnconv3.bn_s1.bias", "stage5d.rebnconv3.bn_s1.running_mean", "stage5d.rebnconv3.bn_s1.running_var", "stage5d.rebnconv4.conv_s1.weight", "stage5d.rebnconv4.conv_s1.bias", "stage5d.rebnconv4.bn_s1.weight", "stage5d.rebnconv4.bn_s1.bias", "stage5d.rebnconv4.bn_s1.running_mean", "stage5d.rebnconv4.bn_s1.running_var", "stage5d.rebnconv3d.conv_s1.weight", "stage5d.rebnconv3d.conv_s1.bias", "stage5d.rebnconv3d.bn_s1.weight", "stage5d.rebnconv3d.bn_s1.bias", "stage5d.rebnconv3d.bn_s1.running_mean", "stage5d.rebnconv3d.bn_s1.running_var", "stage5d.rebnconv2d.conv_s1.weight", "stage5d.rebnconv2d.conv_s1.bias", "stage5d.rebnconv2d.bn_s1.weight", "stage5d.rebnconv2d.bn_s1.bias", "stage5d.rebnconv2d.bn_s1.running_mean", "stage5d.rebnconv2d.bn_s1.running_var", "stage5d.rebnconv1d.conv_s1.weight", "stage5d.rebnconv1d.conv_s1.bias", "stage5d.rebnconv1d.bn_s1.weight", "stage5d.rebnconv1d.bn_s1.bias", "stage5d.rebnconv1d.bn_s1.running_mean", "stage5d.rebnconv1d.bn_s1.running_var", "stage4d.rebnconvin.conv_s1.weight", "stage4d.rebnconvin.conv_s1.bias", "stage4d.rebnconvin.bn_s1.weight", "stage4d.rebnconvin.bn_s1.bias", "stage4d.rebnconvin.bn_s1.running_mean", "stage4d.rebnconvin.bn_s1.running_var", "stage4d.rebnconv1.conv_s1.weight", "stage4d.rebnconv1.conv_s1.bias", "stage4d.rebnconv1.bn_s1.weight", "stage4d.rebnconv1.bn_s1.bias", "stage4d.rebnconv1.bn_s1.running_mean", "stage4d.rebnconv1.bn_s1.running_var", "stage4d.rebnconv2.conv_s1.weight", "stage4d.rebnconv2.conv_s1.bias", "stage4d.rebnconv2.bn_s1.weight", "stage4d.rebnconv2.bn_s1.bias", "stage4d.rebnconv2.bn_s1.running_mean", "stage4d.rebnconv2.bn_s1.running_var", "stage4d.rebnconv3.conv_s1.weight", "stage4d.rebnconv3.conv_s1.bias", "stage4d.rebnconv3.bn_s1.weight", "stage4d.rebnconv3.bn_s1.bias", "stage4d.rebnconv3.bn_s1.running_mean", "stage4d.rebnconv3.bn_s1.running_var", "stage4d.rebnconv4.conv_s1.weight", "stage4d.rebnconv4.conv_s1.bias", "stage4d.rebnconv4.bn_s1.weight", "stage4d.rebnconv4.bn_s1.bias", "stage4d.rebnconv4.bn_s1.running_mean", "stage4d.rebnconv4.bn_s1.running_var", "stage4d.rebnconv3d.conv_s1.weight", "stage4d.rebnconv3d.conv_s1.bias", "stage4d.rebnconv3d.bn_s1.weight", "stage4d.rebnconv3d.bn_s1.bias", "stage4d.rebnconv3d.bn_s1.running_mean", "stage4d.rebnconv3d.bn_s1.running_var", "stage4d.rebnconv2d.conv_s1.weight", "stage4d.rebnconv2d.conv_s1.bias", "stage4d.rebnconv2d.bn_s1.weight", "stage4d.rebnconv2d.bn_s1.bias", "stage4d.rebnconv2d.bn_s1.running_mean", "stage4d.rebnconv2d.bn_s1.running_var", "stage4d.rebnconv1d.conv_s1.weight", "stage4d.rebnconv1d.conv_s1.bias", "stage4d.rebnconv1d.bn_s1.weight", "stage4d.rebnconv1d.bn_s1.bias", "stage4d.rebnconv1d.bn_s1.running_mean", "stage4d.rebnconv1d.bn_s1.running_var", "stage3d.rebnconvin.conv_s1.weight", "stage3d.rebnconvin.conv_s1.bias", "stage3d.rebnconvin.bn_s1.weight", "stage3d.rebnconvin.bn_s1.bias", "stage3d.rebnconvin.bn_s1.running_mean", "stage3d.rebnconvin.bn_s1.running_var", "stage3d.rebnconv1.conv_s1.weight", "stage3d.rebnconv1.conv_s1.bias", "stage3d.rebnconv1.bn_s1.weight", "stage3d.rebnconv1.bn_s1.bias", "stage3d.rebnconv1.bn_s1.running_mean", "stage3d.rebnconv1.bn_s1.running_var", "stage3d.rebnconv2.conv_s1.weight", "stage3d.rebnconv2.conv_s1.bias", "stage3d.rebnconv2.bn_s1.weight", "stage3d.rebnconv2.bn_s1.bias", "stage3d.rebnconv2.bn_s1.running_mean", "stage3d.rebnconv2.bn_s1.running_var", "stage3d.rebnconv3.conv_s1.weight", "stage3d.rebnconv3.conv_s1.bias", "stage3d.rebnconv3.bn_s1.weight", "stage3d.rebnconv3.bn_s1.bias", "stage3d.rebnconv3.bn_s1.running_mean", "stage3d.rebnconv3.bn_s1.running_var", "stage3d.rebnconv4.conv_s1.weight", "stage3d.rebnconv4.conv_s1.bias", "stage3d.rebnconv4.bn_s1.weight", "stage3d.rebnconv4.bn_s1.bias", "stage3d.rebnconv4.bn_s1.running_mean", "stage3d.rebnconv4.bn_s1.running_var", "stage3d.rebnconv5.conv_s1.weight", "stage3d.rebnconv5.conv_s1.bias", "stage3d.rebnconv5.bn_s1.weight", "stage3d.rebnconv5.bn_s1.bias", "stage3d.rebnconv5.bn_s1.running_mean", "stage3d.rebnconv5.bn_s1.running_var", "stage3d.rebnconv4d.conv_s1.weight", "stage3d.rebnconv4d.conv_s1.bias", "stage3d.rebnconv4d.bn_s1.weight", "stage3d.rebnconv4d.bn_s1.bias", "stage3d.rebnconv4d.bn_s1.running_mean", "stage3d.rebnconv4d.bn_s1.running_var", "stage3d.rebnconv3d.conv_s1.weight", "stage3d.rebnconv3d.conv_s1.bias", "stage3d.rebnconv3d.bn_s1.weight", "stage3d.rebnconv3d.bn_s1.bias", "stage3d.rebnconv3d.bn_s1.running_mean", "stage3d.rebnconv3d.bn_s1.running_var", "stage3d.rebnconv2d.conv_s1.weight", "stage3d.rebnconv2d.conv_s1.bias", "stage3d.rebnconv2d.bn_s1.weight", "stage3d.rebnconv2d.bn_s1.bias", "stage3d.rebnconv2d.bn_s1.running_mean", "stage3d.rebnconv2d.bn_s1.running_var", "stage3d.rebnconv1d.conv_s1.weight", "stage3d.rebnconv1d.conv_s1.bias", "stage3d.rebnconv1d.bn_s1.weight", "stage3d.rebnconv1d.bn_s1.bias", "stage3d.rebnconv1d.bn_s1.running_mean", "stage3d.rebnconv1d.bn_s1.running_var", "stage2d.rebnconvin.conv_s1.weight", "stage2d.rebnconvin.conv_s1.bias", "stage2d.rebnconvin.bn_s1.weight", "stage2d.rebnconvin.bn_s1.bias", "stage2d.rebnconvin.bn_s1.running_mean", "stage2d.rebnconvin.bn_s1.running_var", "stage2d.rebnconv1.conv_s1.weight", "stage2d.rebnconv1.conv_s1.bias", "stage2d.rebnconv1.bn_s1.weight", "stage2d.rebnconv1.bn_s1.bias", "stage2d.rebnconv1.bn_s1.running_mean", "stage2d.rebnconv1.bn_s1.running_var", "stage2d.rebnconv2.conv_s1.weight", "stage2d.rebnconv2.conv_s1.bias", "stage2d.rebnconv2.bn_s1.weight", "stage2d.rebnconv2.bn_s1.bias", "stage2d.rebnconv2.bn_s1.running_mean", "stage2d.rebnconv2.bn_s1.running_var", "stage2d.rebnconv3.conv_s1.weight", "stage2d.rebnconv3.conv_s1.bias", "stage2d.rebnconv3.bn_s1.weight", "stage2d.rebnconv3.bn_s1.bias", "stage2d.rebnconv3.bn_s1.running_mean", "stage2d.rebnconv3.bn_s1.running_var", "stage2d.rebnconv4.conv_s1.weight", "stage2d.rebnconv4.conv_s1.bias", "stage2d.rebnconv4.bn_s1.weight", "stage2d.rebnconv4.bn_s1.bias", "stage2d.rebnconv4.bn_s1.running_mean", "stage2d.rebnconv4.bn_s1.running_var", "stage2d.rebnconv5.conv_s1.weight", "stage2d.rebnconv5.conv_s1.bias", "stage2d.rebnconv5.bn_s1.weight", "stage2d.rebnconv5.bn_s1.bias", "stage2d.rebnconv5.bn_s1.running_mean", "stage2d.rebnconv5.bn_s1.running_var", "stage2d.rebnconv6.conv_s1.weight", "stage2d.rebnconv6.conv_s1.bias", "stage2d.rebnconv6.bn_s1.weight", "stage2d.rebnconv6.bn_s1.bias", "stage2d.rebnconv6.bn_s1.running_mean", "stage2d.rebnconv6.bn_s1.running_var", "stage2d.rebnconv5d.conv_s1.weight", "stage2d.rebnconv5d.conv_s1.bias", "stage2d.rebnconv5d.bn_s1.weight", "stage2d.rebnconv5d.bn_s1.bias", "stage2d.rebnconv5d.bn_s1.running_mean", "stage2d.rebnconv5d.bn_s1.running_var", "stage2d.rebnconv4d.conv_s1.weight", "stage2d.rebnconv4d.conv_s1.bias", "stage2d.rebnconv4d.bn_s1.weight", "stage2d.rebnconv4d.bn_s1.bias", "stage2d.rebnconv4d.bn_s1.running_mean", "stage2d.rebnconv4d.bn_s1.running_var", "stage2d.rebnconv3d.conv_s1.weight", "stage2d.rebnconv3d.conv_s1.bias", "stage2d.rebnconv3d.bn_s1.weight", "stage2d.rebnconv3d.bn_s1.bias", "stage2d.rebnconv3d.bn_s1.running_mean", "stage2d.rebnconv3d.bn_s1.running_var", "stage2d.rebnconv2d.conv_s1.weight", "stage2d.rebnconv2d.conv_s1.bias", "stage2d.rebnconv2d.bn_s1.weight", "stage2d.rebnconv2d.bn_s1.bias", "stage2d.rebnconv2d.bn_s1.running_mean", "stage2d.rebnconv2d.bn_s1.running_var", "stage2d.rebnconv1d.conv_s1.weight", "stage2d.rebnconv1d.conv_s1.bias", "stage2d.rebnconv1d.bn_s1.weight", "stage2d.rebnconv1d.bn_s1.bias", "stage2d.rebnconv1d.bn_s1.running_mean", "stage2d.rebnconv1d.bn_s1.running_var", "stage1d.rebnconvin.conv_s1.weight", "stage1d.rebnconvin.conv_s1.bias", "stage1d.rebnconvin.bn_s1.weight", "stage1d.rebnconvin.bn_s1.bias", "stage1d.rebnconvin.bn_s1.running_mean", "stage1d.rebnconvin.bn_s1.running_var", "stage1d.rebnconv1.conv_s1.weight", "stage1d.rebnconv1.conv_s1.bias", "stage1d.rebnconv1.bn_s1.weight", "stage1d.rebnconv1.bn_s1.bias", "stage1d.rebnconv1.bn_s1.running_mean", "stage1d.rebnconv1.bn_s1.running_var", "stage1d.rebnconv2.conv_s1.weight", "stage1d.rebnconv2.conv_s1.bias", "stage1d.rebnconv2.bn_s1.weight", "stage1d.rebnconv2.bn_s1.bias", "stage1d.rebnconv2.bn_s1.running_mean", "stage1d.rebnconv2.bn_s1.running_var", "stage1d.rebnconv3.conv_s1.weight", "stage1d.rebnconv3.conv_s1.bias", "stage1d.rebnconv3.bn_s1.weight", "stage1d.rebnconv3.bn_s1.bias", "stage1d.rebnconv3.bn_s1.running_mean", "stage1d.rebnconv3.bn_s1.running_var", "stage1d.rebnconv4.conv_s1.weight", "stage1d.rebnconv4.conv_s1.bias", "stage1d.rebnconv4.bn_s1.weight", "stage1d.rebnconv4.bn_s1.bias", "stage1d.rebnconv4.bn_s1.running_mean", "stage1d.rebnconv4.bn_s1.running_var", "stage1d.rebnconv5.conv_s1.weight", "stage1d.rebnconv5.conv_s1.bias", "stage1d.rebnconv5.bn_s1.weight", "stage1d.rebnconv5.bn_s1.bias", "stage1d.rebnconv5.bn_s1.running_mean", "stage1d.rebnconv5.bn_s1.running_var", "stage1d.rebnconv6.conv_s1.weight", "stage1d.rebnconv6.conv_s1.bias", "stage1d.rebnconv6.bn_s1.weight", "stage1d.rebnconv6.bn_s1.bias", "stage1d.rebnconv6.bn_s1.running_mean", "stage1d.rebnconv6.bn_s1.running_var", "stage1d.rebnconv7.conv_s1.weight", "stage1d.rebnconv7.conv_s1.bias", "stage1d.rebnconv7.bn_s1.weight", "stage1d.rebnconv7.bn_s1.bias", "stage1d.rebnconv7.bn_s1.running_mean", "stage1d.rebnconv7.bn_s1.running_var", "stage1d.rebnconv6d.conv_s1.weight", "stage1d.rebnconv6d.conv_s1.bias", "stage1d.rebnconv6d.bn_s1.weight", "stage1d.rebnconv6d.bn_s1.bias", "stage1d.rebnconv6d.bn_s1.running_mean", "stage1d.rebnconv6d.bn_s1.running_var", "stage1d.rebnconv5d.conv_s1.weight", "stage1d.rebnconv5d.conv_s1.bias", "stage1d.rebnconv5d.bn_s1.weight", "stage1d.rebnconv5d.bn_s1.bias", "stage1d.rebnconv5d.bn_s1.running_mean", "stage1d.rebnconv5d.bn_s1.running_var", "stage1d.rebnconv4d.conv_s1.weight", "stage1d.rebnconv4d.conv_s1.bias", "stage1d.rebnconv4d.bn_s1.weight", "stage1d.rebnconv4d.bn_s1.bias", "stage1d.rebnconv4d.bn_s1.running_mean", "stage1d.rebnconv4d.bn_s1.running_var", "stage1d.rebnconv3d.conv_s1.weight", "stage1d.rebnconv3d.conv_s1.bias", "stage1d.rebnconv3d.bn_s1.weight", "stage1d.rebnconv3d.bn_s1.bias", "stage1d.rebnconv3d.bn_s1.running_mean", "stage1d.rebnconv3d.bn_s1.running_var", "stage1d.rebnconv2d.conv_s1.weight", "stage1d.rebnconv2d.conv_s1.bias", "stage1d.rebnconv2d.bn_s1.weight", "stage1d.rebnconv2d.bn_s1.bias", "stage1d.rebnconv2d.bn_s1.running_mean", "stage1d.rebnconv2d.bn_s1.running_var", "stage1d.rebnconv1d.conv_s1.weight", "stage1d.rebnconv1d.conv_s1.bias", "stage1d.rebnconv1d.bn_s1.weight", "stage1d.rebnconv1d.bn_s1.bias", "stage1d.rebnconv1d.bn_s1.running_mean", "stage1d.rebnconv1d.bn_s1.running_var", "side1.weight", "side1.bias", "side2.weight", "side2.bias", "side3.weight", "side3.bias", "side4.weight", "side4.bias", "side5.weight", "side5.bias", "side6.weight", "side6.bias", "outconv.weight", "outconv.bias".
        Unexpected key(s) in state_dict: "rebnconvin.conv_s1.weight", "rebnconvin.conv_s1.bias", "rebnconvin.bn_s1.weight", "rebnconvin.bn_s1.bias", "rebnconvin.bn_s1.running_mean", "rebnconvin.bn_s1.running_var", "rebnconvin.bn_s1.num_batches_tracked", "rebnconv1.conv_s1.weight", "rebnconv1.conv_s1.bias", "rebnconv1.bn_s1.weight", "rebnconv1.bn_s1.bias", "rebnconv1.bn_s1.running_mean", "rebnconv1.bn_s1.running_var", "rebnconv1.bn_s1.num_batches_tracked", "rebnconv2.conv_s1.weight", "rebnconv2.conv_s1.bias", "rebnconv2.bn_s1.weight", "rebnconv2.bn_s1.bias", "rebnconv2.bn_s1.running_mean", "rebnconv2.bn_s1.running_var", "rebnconv2.bn_s1.num_batches_tracked", "rebnconv3.conv_s1.weight", "rebnconv3.conv_s1.bias", "rebnconv3.bn_s1.weight", "rebnconv3.bn_s1.bias", "rebnconv3.bn_s1.running_mean", "rebnconv3.bn_s1.running_var", "rebnconv3.bn_s1.num_batches_tracked", "rebnconv4.conv_s1.weight", "rebnconv4.conv_s1.bias", "rebnconv4.bn_s1.weight", "rebnconv4.bn_s1.bias", "rebnconv4.bn_s1.running_mean", "rebnconv4.bn_s1.running_var", "rebnconv4.bn_s1.num_batches_tracked", "rebnconv5.conv_s1.weight", "rebnconv5.conv_s1.bias", "rebnconv5.bn_s1.weight", "rebnconv5.bn_s1.bias", "rebnconv5.bn_s1.running_mean", "rebnconv5.bn_s1.running_var", "rebnconv5.bn_s1.num_batches_tracked", "rebnconv6.conv_s1.weight", "rebnconv6.conv_s1.bias", "rebnconv6.bn_s1.weight", "rebnconv6.bn_s1.bias", "rebnconv6.bn_s1.running_mean", "rebnconv6.bn_s1.running_var", "rebnconv6.bn_s1.num_batches_tracked", "rebnconv7.conv_s1.weight", "rebnconv7.conv_s1.bias", "rebnconv7.bn_s1.weight", "rebnconv7.bn_s1.bias", "rebnconv7.bn_s1.running_mean", "rebnconv7.bn_s1.running_var", "rebnconv7.bn_s1.num_batches_tracked", "rebnconv6d.conv_s1.weight", "rebnconv6d.conv_s1.bias", "rebnconv6d.bn_s1.weight", "rebnconv6d.bn_s1.bias", "rebnconv6d.bn_s1.running_mean", "rebnconv6d.bn_s1.running_var", "rebnconv6d.bn_s1.num_batches_tracked", "rebnconv5d.conv_s1.weight", "rebnconv5d.conv_s1.bias", "rebnconv5d.bn_s1.weight", "rebnconv5d.bn_s1.bias", "rebnconv5d.bn_s1.running_mean", "rebnconv5d.bn_s1.running_var", "rebnconv5d.bn_s1.num_batches_tracked", "rebnconv4d.conv_s1.weight", "rebnconv4d.conv_s1.bias", "rebnconv4d.bn_s1.weight", "rebnconv4d.bn_s1.bias", "rebnconv4d.bn_s1.running_mean", "rebnconv4d.bn_s1.running_var", "rebnconv4d.bn_s1.num_batches_tracked", "rebnconv3d.conv_s1.weight", "rebnconv3d.conv_s1.bias", "rebnconv3d.bn_s1.weight", "rebnconv3d.bn_s1.bias", "rebnconv3d.bn_s1.running_mean", "rebnconv3d.bn_s1.running_var", "rebnconv3d.bn_s1.num_batches_tracked", "rebnconv2d.conv_s1.weight", "rebnconv2d.conv_s1.bias", "rebnconv2d.bn_s1.weight", "rebnconv "rebnconv1d.conv_s1.weight", "rebnconv1d.conv_s1.bias", "rebnconv1d.bn_s1.weight", "rebnconv1d.bn_s1.bias", "rebnconv1d.bn_s1.running_mean", "rebnconv1d.bn_s1.running_var", "rebnconv1d.bn_s1.num_batches_tracked", ".rebnconvin.conv_s1.weight", ".rebnconvin.conv_s1.bias", ".rebnconvin.bn_s1.weight", ".rebnconvin.bn_s1.bias", ".rebnconvin.bn_s1.running_mean", ".rebnconvin.bn_s1.running_var", ".rebnconvin.bn_s1.num_batches_tracked", ".rebnconv1.conv_s1.weight", ".rebnconv1.conv_s1.bias", ".rebnconv1.bn_s1.weight", ".rebnconv1.bn_s1.bias", ".rebnconv1.bn_s1.running_mean", ".rebnconv1.bn_s1.running.weight", ".rebnconv2.bn_s1.bias", ".rebnconv2.bn_s1.running_mean", ".rebnconv2.bn_s1.running_var", ".rebnconv2.bn_s1.num_batches_tracked", ".rebnconv3.conv_s1.weight", ".rebnconv3.conv_s1.bias", ".rebnconv3.bn_s1.weight", ".rebnconv3.bn_s1.bias", ".rebnconv3.bn_s1.running_mean", ".rebnconv3.bn_s1.running_var", ".rebnconv3.bn_s1.num_batches_tracked", ".rebnconv4.conv_s1.weight", ".rebnconv4.conv_s1.bias", ".rebnconv4.bn_s1.weight", ".rebnconv4.bn_s1.bias", ".rebnconv4.bn_s1.running_mean", ".rebnconv4.bn_s1.running_var", ".rebnconv4.bn_s1.num_batches_tracked", ".rebnconv3d.conv_s1.weight", ".rebnconv3d.conv_s1.bias", ".rebnconv3d.bn_s1.weight", ".rebnconv3d.bn_s1.bias", ".rebnconv3d.bn_s1.running_mean", ".rebnconv3d.bn_s1.running_var", ".rebnconv3d.bn_s1.num_batches_tracked", ".rebnconv2d.conv_s1.weight", ".rebnconv2d.conv_s1.bias", ".rebnconv2d.bn_s1.weight", ".rebnconv2d.bn_s1.bias", ".rebnconv2d.bn_s1.running_mean", ".rebnconv2d.bn_s1.running_var", ".rebnconv2d.bn_s1.num_batches_tracked", ".rebnconv1d.conv_s1.weight", ".rebnconv1d.conv_s1.bias", ".rebnconv1d.bn_s1.weight", ".rebnconv1d.bn_s1.bias", ".rebnconv1d.bn_s1.running_mean", ".rebnconv1d.bn_s1.running_var", ".rebnconv1d.bn_s1.num_batches_tracked", ".rebnconv5.conv_s1.weight", ".rebnconv5.conv_s1.bias", ".rebnconv5.bn_s1.weight", ".rebnconv5.bn_s1.bias", ".rebnconv5.bn_s1.running_mean", ".rebnconv5.bn_s1.running_var", ".rebnconv5.bn_s1.num_batches_tracked", ".rebnconv4d.conv_s1.weight", ".rebnconv4d.conv_s1.bias", ".rebnconv4d.bn_s1.weight", ".rebnconv4d.bn_s1.bias", ".rebnconv4d.bn_s1.running_mean", ".rebnconv4d.bn_s1.running_var", ".rebnconv4d.bn_s1.num_batches_tracked", ".rebnconv6.conv_s1.weight", ".rebnconv6.conv_s1.bias", ".rebnconv6.bn_s1.weight", ".rebnconv6.bn_s1.bias", ".rebnconv6.bn_s1.running_mean", ".rebnconv6.bn_s1.running_var", ".rebnconv6.bn_s1.num_batches_tracked", ".rebnconv5d.conv_s1.weight", ".rebnconv5d.conv_s1.bias", ".rebnconv5d.bn_s1.weight", ".rebnconv5d.bn_s1.bias", ".rebnconv5d.bn_s1.running_mean", ".rebnconv5d.bn_s1.running_var", ".rebnconv5d.bn_s1.num_batches_tracked", ".rebnconv7.conv_s1.weight", ".rebnconv7.conv_s1.bias", ".rebnconv7.bn_s1.weight", ".rebnconv7.bn_s1.bias", ".rebnconv7.bn_s1.running_mean", ".rebnconv7.bn_s1.running_var", ".rebnconv7.bn_s1.num_batches_tracked", ".rebnconv6d.conv_s1.weight", ".rebnconv6d.conv_s1.bias", ".rebnconv6d.bn_s1.weight", ".rebnconv6d.bn_s1.bias", ".rebnconv6d.bn_s1.running_mean", ".rebnconv6d.bn_s1.running_var", ".rebnconv6d.bn_s1.num_batches_tracked", "eight", "ias", ".weight", ".bias".

Model can be loaded only with strict=False: model.load_state_dict(new_state_dict, strict=False)

What could be the reason for it?

  1. In train.py use load_checkpoint_mgpu instead of load_checkpoint() in line 63
  2. in infer.py use load_checkpoint() instead of load_checkpoint_mgpu() in line 59
  3. Also Add in line 29 on utils/saving_utils.py to model.load_state_dict(new_state_dict, strict=False)

@Antonytm
Copy link

@Kaustubh-cpu

Thank you, I will try it! (in a week or so)

@Antonytm
Copy link

Antonytm commented Apr 2, 2024

@Kaustubh-cpu
I do not fully understand all your changes, but I can confirm that they work!
Thank you!

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

7 participants