-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmetadata.py
1031 lines (872 loc) · 33.9 KB
/
metadata.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import concurrent.futures
import copy
import os
import pickle
import re
import tempfile
from collections import defaultdict
import duckdb
import pyarrow as pa
import pyarrow.fs as pfs
import pyarrow.parquet as pq
from fsspec import AbstractFileSystem
from .filesystem import FileSystem, clear_cache
# from .helpers.metadata import collect_parquet_metadata # , remove_from_metadata
from .helpers.misc import get_partitions_from_path, run_parallel
from .schema import repair_schema # unify_schemas
def collect_parquet_metadata(
files: list[str] | str,
base_path: str | None = None,
filesystem: AbstractFileSystem | pfs.FileSystem | None = None,
n_jobs: int = -1,
backend: str = "threading",
verbose: bool = True,
) -> dict[str, pq.FileMetaData]:
"""Collect all metadata information of the given parqoet files.
Args:
files (list[str] | str): Parquet files.
filesystem (AbstractFileSystem | pfs.FileSystem | None, optional): Filesystem. Defaults to None.
n_jobs (int, optional): n_jobs parameter of joblib.Parallel. Defaults to -1.
backend (str, optional): backend parameter of joblib.Parallel. Defaults to "threading".
verbose (bool, optional): Wheter to show the task progress using tqdm or not. Defaults to True.
Returns:
dict[str, pq.FileMetaData]: Parquet metadata of the given files.
"""
def get_metadata(f, base_path, filesystem):
if base_path is not None:
path = os.path.join(base_path, f)
else:
path = f
return {f: pq.read_metadata(path, filesystem=filesystem)}
metadata = run_parallel(
get_metadata,
files,
base_path=base_path,
filesystem=filesystem,
backend=backend,
n_jobs=n_jobs,
verbose=verbose,
)
return {key: value for d in metadata for key, value in d.items()}
def remove_from_metadata(
metadata: pq.FileMetaData,
rm_files: list[str] | None = None,
keep_files: list[str] | None = None,
base_path: str = None,
) -> pq.FileMetaData:
"""
Removes row groups from the metadata of the dataset.
This method removes row groups from the given metadata based on the given files.
Files in `rm_files` will be removed from the metadata. Files in `keep_files` will be kept in the metadata.
Args:
metadata (pq.FileMetaData): The metadata of the dataset.
rm_files (list[str]): The files to delete from the metadata.
keep_files (list[str]): The files to keep in the metadata.
Returns:
pq.FileMetaData: The updated metadata of the dataset.
"""
row_groups = []
if rm_files is not None:
if base_path is not None:
rm_files = [f.replace(base_path, "").lstrip("/") for f in rm_files]
# row_groups to keep
row_groups += [
metadata.row_group(i)
for i in range(metadata.num_row_groups)
if metadata.row_group(i).column(0).file_path not in rm_files
]
if keep_files is not None:
if base_path is not None:
keep_files = [f.replace(base_path, "").lstrip("/") for f in keep_files]
# row_groups to keep
row_groups += [
metadata.row_group(i)
for i in range(metadata.num_row_groups)
if metadata.row_group(i).column(0).file_path in keep_files
]
if len(row_groups):
new_metadata = row_groups[0]
for rg in row_groups[1:]:
new_metadata.append_row_groups(rg)
return new_metadata
return metadata
def get_file_paths(
metadata: pq.FileMetaData,
) -> list[str]:
return sorted(
set(
[
metadata.row_group(i).column(0).file_path.lstrip("../")
for i in range(metadata.num_row_groups)
]
)
)
class ParquetDatasetMetadata:
def __init__(
self,
path: str,
filesystem: AbstractFileSystem | pfs.FileSystem | None = None,
bucket: str | None = None,
cached: bool = False,
update_metadata: bool = False,
**fs_kwargs,
) -> None:
"""
A class representing metadata for a Parquet dataset.
Args:
path (str): The path to the dataset.
filesystem (AbstractFileSystem | pfs.FileSystem | None, optional): The filesystem to use. Defaults to None.
bucket (str | None, optional): The name of the bucket to use. Defaults to None.
cached (bool, optional): Whether to use a cached filesystem. Defaults to False.
**cached_options: Additional options to pass to the cached filesystem.
Returns:
None
"""
self._path = path
self._bucket = bucket
self._cached = cached
self._base_filesystem = filesystem
if cached:
cache_storage = fs_kwargs.pop(
"cache_storage", tempfile.mkdtemp(prefix="pydala2_")
)
# cache_storage = os.path.join(cache_storage, path)
else:
cache_storage = None
self._filesystem = FileSystem(
bucket=bucket,
fs=filesystem,
cached=cached,
cache_storage=cache_storage,
**fs_kwargs,
)
self._makedirs()
# self.load_files()
self._fs_kwargs = fs_kwargs
self._metadata_file = os.path.join(path, "_metadata")
self._file_metadata_file = os.path.join(path, "_file_metadata")
self._metadata = self._read_metadata()
self._file_metadata = None # self._read_file_metadata()
if update_metadata:
self.update()
def _read_metadata(self) -> pq.FileMetaData | None:
if self.has_metadata_file:
return pq.read_metadata(self._metadata_file, filesystem=self._filesystem)
def _read_file_metadata(self) -> dict[str : pq.FileMetaData] | None:
if self.has_file_metadata_file:
with self._filesystem.open(self._file_metadata_file, "rb") as f:
return pickle.load(f)
def _makedirs(self):
if self._filesystem.exists(self._path):
return
try:
self._filesystem.mkdir(self._path)
except Exception as e:
_ = e
self._filesystem.touch(os.path.join(self._path, "tmp.delete"))
self._filesystem.rm(os.path.join(self._path, "tmp.delete"))
def load_files(self) -> None:
if self.has_metadata:
self._files = get_file_paths(self._metadata)
else:
self.clear_cache()
self._files = [
fn.replace(self._path, "").lstrip("/")
for fn in sorted(
self._filesystem.glob(
os.path.join(self._path, "**/*.parquet") # {self._format}")
)
)
]
def _ls_files(self) -> None:
"""
Reloads the list of files in the dataset directory. This method should be called
after adding or removing files from the directory to ensure that the dataset object
has an up-to-date list of files.
Returns:
None
"""
self.clear_cache()
return [
fn.replace(self._path, "").lstrip("/")
for fn in sorted(
self._filesystem.glob(os.path.join(self._path, "**/*.parquet"))
)
]
def _collect_file_metadata(self, files: list[str] | None = None, **kwargs) -> None:
"""
Collects metadata for the specified files and updates the `file_metadata` attribute of the dataset object.
Args:
files (list[str] | None): A list of file paths to collect metadata for. If None, metadata will be
collected for all files in the dataset.
**kwargs: Additional keyword arguments to pass to the `collect_parquet_metadata` function.
Return
None
"""
if files is None:
files = self._ls_files()
file_metadata = collect_parquet_metadata(
files=files,
base_path=self._path,
filesystem=self._filesystem,
**kwargs,
)
# if file_metadata:
for f in file_metadata:
file_metadata[f].set_file_path(f)
if self.has_file_metadata:
self._file_metadata.update(file_metadata)
else:
self._file_metadata = file_metadata
def _rm_file_metadata(self, files: list[str] | None = None) -> None:
"""
Removes file metadata for files that are no longer in the dataset.
"""
for f in files:
self._file_metadata.pop(f)
def _dump_file_metadata(self):
"""
Save file metadata to a specified file.
"""
with self._filesystem.open(self._file_metadata_file, "wb") as f:
pickle.dump(self._file_metadata, f)
def update_file_metadata(self, files: list[str] | None = None, **kwargs) -> None:
"""
Updates the metadata for files in the dataset.
This method reloads the files in the dataset and then updates the metadata for any files that have
not yet been processed. If the dataset already has file metadata, this method will only update the
metadata for files that have been added since the last time metadata was collected.
Args:
**kwargs: Additional keyword arguments to pass to the `collect_file_metadata` method.
Returns:
None
"""
# Add new files to file_metadata
all_files = self._ls_files() or files
new_files = []
rm_files = []
if self.has_file_metadata:
new_files += sorted(set(all_files) - set(self.files_in_file_metadata))
rm_files += sorted(set(self.files_in_file_metadata) - set(all_files))
else:
new_files = all_files
if files is not None:
new_files = sorted(set(files + new_files))
if new_files:
self._collect_file_metadata(files=new_files, **kwargs)
if rm_files:
self._rm_file_metadata(files=rm_files)
if new_files or rm_files:
self._dump_file_metadata()
def reset(self):
"""
Resets the dataset by removing the metadata file and clearing the cache.
This method removes the metadata file and clears the cache for the dataset's filesystem and base filesystem.
Returns:
None
"""
if self.has_metadata:
del self._metadata
self._metadata = None
self._filesystem.rm(self._metadata_file)
if hasattr(self, "_file_schema"):
del self._file_schema
if hasattr(self, "_schema"):
del self._schema
if self.has_file_metadata:
del self._file_metadata
self._file_metadata = None
self._filesystem.rm(self._file_metadata_file)
self.clear_cache()
def _get_unified_schema(
self,
# ts_unit: str | None = None,
# tz: str | None = None,
# use_large_string: bool = False,
# sort: bool | list[str] = False,
) -> tuple[pa.Schema, bool]:
"""
Returns the unified schema for the dataset.
Returns:
pyarrow.Schema: The unified schema for the dataset.
"""
# if not self.has_file_metadata:
# self.update_file_metadata()
if self.has_file_metadata:
new_files = sorted(
(set(self.files_in_file_metadata) - set(self.files_in_metadata))
)
if len(new_files):
schemas = [
self.file_metadata[f].schema.to_arrow_schema() for f in new_files
]
if self.has_metadata:
schemas.insert(0, self.metadata.schema.to_arrow_schema())
unified_schema = pa.unify_schemas(schemas, promote_options="permissive")
schemas_equal = all([unified_schema == schema for schema in schemas])
else:
unified_schema = self.metadata.schema.to_arrow_schema()
schemas_equal = True
return unified_schema, schemas_equal
def _repair_file_schemas(
self,
schema: pa.Schema | None = None,
format_version: str | None = None,
tz: str | None = None,
ts_unit: str | None = None,
use_large_string: bool = False,
# sort: bool | list[str] = False,
alter_schema: bool = True,
**kwargs,
):
"""
Repairs the schemas of files in the metadata.
Args:
schema (pa.Schema | None, optional): The schema to use for repairing the files. If None,
the unified schema will be used. Defaults to None.
format_version (str | None, optional): The format version to use for repairing the files. If None,
the format version from the metadata will be used. Defaults to None.
tz (str | None, optional): The timezone to use for repairing the files. Defaults to None.
ts_unit (str | None, optional): The timestamp unit to use for repairing the files. Defaults to None.
use_large_string (bool, optional): Whether to use large string type for repairing the files.
Defaults to False.
sort (bool | list[str], optional): Whether to sort the files before repairing. If a list of strings is
provided, it specifies the order in which the files should be repaired. Defaults to False.
alter_schema (bool, optional): Whether to alter the schema of the files. Defaults to True.
**kwargs: Additional keyword arguments to pass to the repair_schema function.
Returns:
None
"""
# get unified schema
if schema is None:
schema, _ = self._get_unified_schema()
# ts_unit=ts_unit, tz=tz, use_large_string=use_large_string, sort=sort
# )
files_to_repair = [
f
for f in self.file_metadata
if self.file_metadata[f].schema.to_arrow_schema() != schema
]
if format_version is None and self.has_metadata:
format_version = self.metadata.format_version
# find files to repair
# files with different schema or format version
if format_version is not None:
files_to_repair += [
f
for f in self.file_metadata
if self.file_metadata[f].format_version != format_version
]
# files with different schema
files_to_repair = sorted(set(files_to_repair))
file_schemas_to_repair = {
f: self.file_metadata[f].schema.to_arrow_schema() for f in files_to_repair
}
# repair schema of files
if len(files_to_repair):
repair_schema(
files=files_to_repair,
file_schemas=file_schemas_to_repair,
schema=schema,
base_path=self._path,
filesystem=self._filesystem,
version=format_version,
ts_unit=ts_unit,
tz=tz,
use_large_string=use_large_string,
alter_schema=alter_schema,
**kwargs,
)
self.clear_cache()
# update file metadata
self.update_file_metadata(files=sorted(files_to_repair), **kwargs)
def _update_metadata(self, **kwargs):
"""
Update metadata based on the given keyword arguments.
Parameters:
**kwargs: Additional keyword arguments.
Returns:
None
"""
if not self.has_file_metadata:
self.update_file_metadata(**kwargs)
if not self.has_file_metadata:
return
rm_files = sorted(
(set(self.files_in_metadata) - set(self.files_in_file_metadata))
)
new_files = sorted(
(set(self.files_in_file_metadata) - set(self.files_in_metadata))
)
if len(rm_files):
self._metadata = copy.copy(
self.file_metadata[self.files_in_file_metadata[0]]
)
for f in self.files_in_file_metadata[1:]:
self._metadata.append_row_groups(self._file_metadata[f])
elif len(new_files):
if not self.has_metadata:
self._metadata = copy.copy(self.file_metadata[new_files[0]])
for f in new_files[1:]:
self._metadata.append_row_groups(self.file_metadata[f])
else:
for f in new_files:
self._metadata.append_row_groups(self.file_metadata[f])
self._write_metadata_file()
self.load_files()
def update(
self,
reload: bool = False,
schema: pa.Schema | None = None,
ts_unit: str | None = None,
tz: str | None = None,
use_large_string: bool = False,
format_version: str | None = None,
sort: bool | list[str] = False,
**kwargs,
) -> None:
"""
Update the data source with optional parameters and reload option.
Args:
reload (bool): Flag to indicate if the data source should be reloaded.
schema (pa.Schema | None): The schema of the data source.
ts_unit (str | None): The unit of the timestamp.
tz (str | None): The time zone of the data source.
use_large_string (bool): Flag to indicate whether to use large string type.
format_version (str | None): The version of the data format.
sort (bool | list[str]): Flag to indicate if sorting is required, or the list of columns to sort by.
**kwargs: Additional keyword arguments.
Returns:
None
"""
if reload:
self.reset()
# update file metadata
self.update_file_metadata(**kwargs)
if len(self.files_in_file_metadata) == 0:
return
self._repair_file_schemas(
schema=schema,
format_version=format_version,
tz=tz,
ts_unit=ts_unit,
use_large_string=use_large_string,
sort=sort,
)
# update metadata file
self._update_metadata(**kwargs)
def replace_schema(self, schema: pa.Schema, **kwargs) -> None:
"""
Replaces the schema of the dataset with the given schema.
Args:
schema (pa.Schema): The schema to use for the dataset.
**kwargs: Additional keyword arguments to pass to the `repair_schema` method.
Returns:
None
"""
self.update(schema=schema, **kwargs)
def load_metadata(self, *args, **kwargs):
self.update(*args, **kwargs)
def _write_metadata_file(self) -> None:
"""
Writes metadata to a file named '_metadata' in the dataset directory.
Returns:
None
"""
with self._filesystem.open(os.path.join(self._path, "_metadata"), "wb") as f:
self._metadata.write_metadata_file(f)
def delete_metadata_files(self) -> None:
"""
Deletes the metadata file associated with the dataset, if it exists.
Raises:
None
"""
if self.has_metadata_file:
self._filesystem.rm(self._metadata_file)
if self.has_file_metadata_file:
self._filesystem.rm(self._file_metadata_file)
def clear_cache(self) -> None:
"""
Clears the cache for the dataset's filesystem and base filesystem.
This method clears the cache for the dataset's filesystem and base filesystem,
which can be useful if the dataset has been modified and the cache needs to be
updated accordingly.
Returns:
None
"""
if hasattr(self._filesystem, "fs"):
clear_cache(self._filesystem.fs)
clear_cache(self._filesystem)
clear_cache(self._base_filesystem)
@property
def has_file_metadata_file(self):
"""
Returns True if the dataset has file metadata, False otherwise.
"""
return self._filesystem.exists(self._file_metadata_file)
@property
def has_file_metadata(self):
"""
Returns True if the dataset has file metadata, False otherwise.
"""
if self._file_metadata is None:
if self.has_file_metadata_file:
self._file_metadata = self._read_file_metadata()
return self._file_metadata is not None
@property
def file_metadata(self):
"""
Returns the file metadata associated with the dataset.
If the file metadata has not been loaded yet, it will be loaded before being returned.
Returns:
dict: The file metadata associated with the dataset.
"""
if not self.has_file_metadata:
self.update_file_metadata()
return self._file_metadata
@property
def files_in_file_metadata(self) -> list:
"""
Returns a list of file paths in the file metadata of the dataset.
Returns:
A list of file paths in the file metadata of the dataset.
"""
if self.has_file_metadata:
return sorted(set(self._file_metadata.keys()))
else:
return []
@property
def has_metadata_file(self):
"""
Returns True if the dataset has a metadata file, False otherwise.
"""
return self._filesystem.exists(self._metadata_file)
@property
def has_metadata(self):
"""
Returns True if the dataset has metadata, False otherwise.
"""
if self._metadata is None:
if self.has_metadata_file:
self._metadata = self._read_metadata()
return self._metadata is not None
@property
def metadata(self):
"""
Returns the metadata associated with the dataset.
If the metadata has not been loaded yet, it will be loaded before being returned.
Returns:
dict: The metadata associated with the dataset.
"""
if not self.has_metadata:
self._update_metadata()
return self._metadata
@property
def files_in_metadata(self) -> list:
"""
Returns a list of file paths referenced in the metadata of the dataset.
Returns:
A list of file paths referenced in the metadata of the dataset.
"""
if self.has_metadata:
return get_file_paths(self.metadata)
else:
return []
@property
def file_schema(self):
"""
Returns the Arrow schema of the dataset file.
If metadata is available, it returns the schema from metadata.
If metadata is not available, it returns an empty schema.
"""
if not hasattr(self, "_file_schema"):
if self.has_metadata:
self._file_schema = self.metadata.schema.to_arrow_schema()
else:
self._file_schema = pa.schema([])
return self._file_schema
@property
def has_files(self):
"""
Returns True if the dataset has files, False otherwise.
"""
return len(self.files) > 0
@property
def files(self) -> list:
"""
Returns a list of file paths in the dataset.
Returns:
A list of file paths in the dataset.
"""
if not hasattr(self, "_files"):
self.load_files()
return self._files
class PydalaDatasetMetadata(ParquetDatasetMetadata):
def __init__(
self,
path: str,
filesystem: AbstractFileSystem | pfs.FileSystem | None = None,
bucket: str | None = None,
cached: bool = False,
# metadata: pq.FileMetaData,
partitioning: None | str | list[str] = None,
ddb_con: duckdb.DuckDBPyConnection | None = None,
**fs_kwargs,
) -> None:
"""
A class representing metadata for a Parquet dataset.
Args:
path (str): The path to the dataset.
filesystem (AbstractFileSystem | pfs.FileSystem | None, optional): The filesystem to use. Defaults to None.
bucket (str | None, optional): The name of the bucket to use. Defaults to None.
cached (bool, optional): Whether to use a cached filesystem. Defaults to False.
**cached_options: Additional options to pass to the cached filesystem.
Returns:
None
"""
# self._parquet_dataset_metadata = parquet_dataset_metadata
super().__init__(
path=path,
filesystem=filesystem,
bucket=bucket,
cached=cached,
**fs_kwargs,
)
self.reset_scan()
self._partitioning = partitioning
if ddb_con is None:
self.ddb_con = duckdb.connect()
else:
self.ddb_con = ddb_con
try:
self.update_metadata_table()
except Exception as e:
print(e)
def reset_scan(self):
"""
Resets the list of scanned files to the original list of files.
"""
self._metadata_table_scanned = None
@staticmethod
def _gen_metadata_table(
metadata: pq.FileMetaData | list[pq.FileMetaData],
partitioning: None | str | list[str] = None,
backend: str = "threading",
verbose: bool = True,
):
"""
Generates a polars DataFrame with statistics for each row group in the dataset.
"""
if isinstance(metadata, pq.FileMetaData):
metadata = [metadata]
metadata_table = defaultdict(list)
def process_row_group(metadata_, rg_num):
row_group = metadata_.row_group(rg_num)
file_path = row_group.column(0).file_path
result = {
"file_path": file_path,
"num_columns": row_group.num_columns,
"num_rows": row_group.num_rows,
"total_byte_size": row_group.total_byte_size,
"compression": row_group.column(0).compression,
}
if "=" in file_path:
partitioning_ = partitioning or "hive"
else:
partitioning_ = partitioning
if partitioning_ is not None:
partitions = dict(
get_partitions_from_path(file_path, partitioning=partitioning_)
)
result.update(partitions)
for col_num in range(row_group.num_columns):
rgc = row_group.column(col_num)
rgc = rgc.to_dict()
col_name = rgc.pop("path_in_schema")
rgc.pop("file_path")
rgc.pop("compression")
if "statistics" in rgc:
if rgc["statistics"] is not None:
rgc.update(rgc.pop("statistics"))
else:
rgc.pop("statistics")
rgc.update(
{
"has_min_max": False,
"min": None,
"max": None,
"null_count": None,
"distinct_count": None,
"num_values": None,
"physical_type": "UNKNOWN",
}
)
metadata_table[col_name].append(rgc)
return result
with concurrent.futures.ThreadPoolExecutor() as executor:
futures = []
for metadata_ in metadata:
for rg_num in range(metadata_.num_row_groups):
futures.append(
executor.submit(process_row_group, metadata_, rg_num)
)
for future in concurrent.futures.as_completed(futures):
result = future.result()
for key, value in result.items():
metadata_table[key].append(value)
return metadata_table
def update_metadata_table(
self,
# metadata: pq.FileMetaData | list[pq.FileMetaData],
# partitioning: None | str | list[str] = None,
backend: str = "threading",
verbose: bool = True,
):
if self.has_metadata:
metadata_table = self._gen_metadata_table(
metadata=self.metadata,
partitioning=self._partitioning,
backend=backend,
verbose=verbose,
)
# self._metadata_table = pa.Table.from_pydict(metadata_table)
self._metadata_table = self.ddb_con.from_arrow(
pa.Table.from_pydict(metadata_table)
)
self._metadata_table.create_view("metadata_table")
@property
def metadata_table(self):
return self._metadata_table
@property
def metadata_table_scanned(self):
return self._metadata_table_scanned
@staticmethod
def _gen_filter(filter_expr: str) -> list[str]:
"""
Generate a modified filter expression for a given filter expression and list of excluded columns.
Args:
filter_expr (str): The filter expression to modify.
exclude_columns (list[str], optional): A list of columns to exclude from the modification. Defaults to [].
Returns:
list: A list of modified filter expressions.
"""
# chech if filter_expr is a date string
filter_expr_mod = []
is_date = False
is_timestamp = False
res = re.findall(
r"[<>=!]\'[1,2]{1}\d{3}-\d{1,2}-\d{1,2}(?:[\s,T]\d{2}:\d{2}:{0,2}\d{0,2})?\'",
filter_expr,
)
if len(res):
is_date = len(res[0]) <= 13
is_timestamp = len(res[0]) > 13
# print(is_date)
if ">" in filter_expr:
filter_expr = f"({filter_expr.replace('>', '.max>')} OR {filter_expr.split('>')[0]}.max IS NULL)"
elif "<" in filter_expr:
filter_expr = f"({filter_expr.replace('<', '.min<')} OR {filter_expr.split('<')[0]}.min IS NULL)"
elif "=" in filter_expr:
filter_expr = (
f"({filter_expr.replace('=', '.min<=')} OR {filter_expr.split('=')[0]}.min IS NULL) "
+ f"AND ({filter_expr.replace('=', '.max>=')} OR {filter_expr.split('=')[0]}.max IS NULL)"
)
if is_date:
filter_expr = (
filter_expr.replace(">", "::DATE>")
.replace("<", "::DATE<")
.replace(" IS NULL", "::DATE IS NULL")
)
elif is_timestamp:
filter_expr = (
filter_expr.replace(">", "::TIMESTAMP>")
.replace("<", "::TIMESTAMP<")
.replace(" IS NULL", "::TIMESTAMP IS NULL")
)
filter_expr_mod.append(filter_expr)
return filter_expr_mod
def scan(self, filter_expr: str | None = None):
"""
Scans the dataset for files that match the given filter expression.
Args:
filter_expr (str | None): A filter expression to apply to the dataset. Defaults to None.
lazy (bool): Whether to perform the scan lazily or eagerly. Defaults to True.
Returns:
None
"""
self._filter_expr = filter_expr
if filter_expr is not None:
filter_expr = re.split(
r"\s+[a,A][n,N][d,D]\s+",
filter_expr,
)
filter_expr_mod = []
for fe in filter_expr:
# if (
# re.split("[>=<]", fe)[0].lstrip("(")
# in self.metadata_table.column_names
# ):
col = re.split("[>=<]", fe)[0].lstrip("(")
# if not isinstance(
# self.metadata_table.schema.field(col).type, pa.StructType
# ):
if self.metadata_table.select(col).types[0].id != "struct":
filter_expr_mod.append(fe)
else:
filter_expr_mod += self._gen_filter(fe)
self._filter_expr_mod = " AND ".join(filter_expr_mod)
# self._metadata_table_scanned = (
# self._con.from_arrow(self.metadata_table)
# .filter(self._filter_expr_mod)
# .arrow()
# )
self._metadata_table_scanned = self._metadata_table.filter(
self._filter_expr_mod
)
# def filter(self, filter_expr: str | None = None):
# """
# Filters the dataset for files that match the given filter expression.
# Args:
# filter_expr (str | None): A filter expression to apply to the dataset. Defaults to None.
# lazy (bool): Whether to perform the scan lazily or eagerly. Defaults to True.
# Returns:
# None
# """
# self.scan(filter_expr=filter_expr)
@property
def latest_filter_expr(self):
"""
Returns the filter expression and its module.
If the filter expression has not been set yet, it will return None for both the expression and its module.
"""
if not hasattr(self, "_filter_expr"):
self._filter_expr = None
self._filter_expr_mod = None
return self._filter_expr, self._filter_expr_mod