-
Notifications
You must be signed in to change notification settings - Fork 100
/
Copy pathattention_augmented_conv.py
148 lines (120 loc) · 5.89 KB
/
attention_augmented_conv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import torch
import torch.nn as nn
import torch.nn.functional as F
use_cuda = torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
class AugmentedConv(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, dk, dv, Nh, shape=0, relative=False, stride=1):
super(AugmentedConv, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.dk = dk
self.dv = dv
self.Nh = Nh
self.shape = shape
self.relative = relative
self.stride = stride
self.padding = (self.kernel_size - 1) // 2
assert self.Nh != 0, "integer division or modulo by zero, Nh >= 1"
assert self.dk % self.Nh == 0, "dk should be divided by Nh. (example: out_channels: 20, dk: 40, Nh: 4)"
assert self.dv % self.Nh == 0, "dv should be divided by Nh. (example: out_channels: 20, dv: 4, Nh: 4)"
assert stride in [1, 2], str(stride) + " Up to 2 strides are allowed."
self.conv_out = nn.Conv2d(self.in_channels, self.out_channels - self.dv, self.kernel_size, stride=stride, padding=self.padding)
self.qkv_conv = nn.Conv2d(self.in_channels, 2 * self.dk + self.dv, kernel_size=self.kernel_size, stride=stride, padding=self.padding)
self.attn_out = nn.Conv2d(self.dv, self.dv, kernel_size=1, stride=1)
if self.relative:
self.key_rel_w = nn.Parameter(torch.randn((2 * self.shape - 1, dk // Nh), requires_grad=True))
self.key_rel_h = nn.Parameter(torch.randn((2 * self.shape - 1, dk // Nh), requires_grad=True))
def forward(self, x):
# Input x
# (batch_size, channels, height, width)
# batch, _, height, width = x.size()
# conv_out
# (batch_size, out_channels, height, width)
conv_out = self.conv_out(x)
batch, _, height, width = conv_out.size()
# flat_q, flat_k, flat_v
# (batch_size, Nh, height * width, dvh or dkh)
# dvh = dv / Nh, dkh = dk / Nh
# q, k, v
# (batch_size, Nh, height, width, dv or dk)
flat_q, flat_k, flat_v, q, k, v = self.compute_flat_qkv(x, self.dk, self.dv, self.Nh)
logits = torch.matmul(flat_q.transpose(2, 3), flat_k)
if self.relative:
h_rel_logits, w_rel_logits = self.relative_logits(q)
logits += h_rel_logits
logits += w_rel_logits
weights = F.softmax(logits, dim=-1)
# attn_out
# (batch, Nh, height * width, dvh)
attn_out = torch.matmul(weights, flat_v.transpose(2, 3))
attn_out = torch.reshape(attn_out, (batch, self.Nh, self.dv // self.Nh, height, width))
# combine_heads_2d
# (batch, out_channels, height, width)
attn_out = self.combine_heads_2d(attn_out)
attn_out = self.attn_out(attn_out)
return torch.cat((conv_out, attn_out), dim=1)
def compute_flat_qkv(self, x, dk, dv, Nh):
qkv = self.qkv_conv(x)
N, _, H, W = qkv.size()
q, k, v = torch.split(qkv, [dk, dk, dv], dim=1)
q = self.split_heads_2d(q, Nh)
k = self.split_heads_2d(k, Nh)
v = self.split_heads_2d(v, Nh)
dkh = dk // Nh
q *= dkh ** -0.5
flat_q = torch.reshape(q, (N, Nh, dk // Nh, H * W))
flat_k = torch.reshape(k, (N, Nh, dk // Nh, H * W))
flat_v = torch.reshape(v, (N, Nh, dv // Nh, H * W))
return flat_q, flat_k, flat_v, q, k, v
def split_heads_2d(self, x, Nh):
batch, channels, height, width = x.size()
ret_shape = (batch, Nh, channels // Nh, height, width)
split = torch.reshape(x, ret_shape)
return split
def combine_heads_2d(self, x):
batch, Nh, dv, H, W = x.size()
ret_shape = (batch, Nh * dv, H, W)
return torch.reshape(x, ret_shape)
def relative_logits(self, q):
B, Nh, dk, H, W = q.size()
q = torch.transpose(q, 2, 4).transpose(2, 3)
rel_logits_w = self.relative_logits_1d(q, self.key_rel_w, H, W, Nh, "w")
rel_logits_h = self.relative_logits_1d(torch.transpose(q, 2, 3), self.key_rel_h, W, H, Nh, "h")
return rel_logits_h, rel_logits_w
def relative_logits_1d(self, q, rel_k, H, W, Nh, case):
rel_logits = torch.einsum('bhxyd,md->bhxym', q, rel_k)
rel_logits = torch.reshape(rel_logits, (-1, Nh * H, W, 2 * W - 1))
rel_logits = self.rel_to_abs(rel_logits)
rel_logits = torch.reshape(rel_logits, (-1, Nh, H, W, W))
rel_logits = torch.unsqueeze(rel_logits, dim=3)
rel_logits = rel_logits.repeat((1, 1, 1, H, 1, 1))
if case == "w":
rel_logits = torch.transpose(rel_logits, 3, 4)
elif case == "h":
rel_logits = torch.transpose(rel_logits, 2, 4).transpose(4, 5).transpose(3, 5)
rel_logits = torch.reshape(rel_logits, (-1, Nh, H * W, H * W))
return rel_logits
def rel_to_abs(self, x):
B, Nh, L, _ = x.size()
col_pad = torch.zeros((B, Nh, L, 1)).to(x)
x = torch.cat((x, col_pad), dim=3)
flat_x = torch.reshape(x, (B, Nh, L * 2 * L))
flat_pad = torch.zeros((B, Nh, L - 1)).to(x)
flat_x_padded = torch.cat((flat_x, flat_pad), dim=2)
final_x = torch.reshape(flat_x_padded, (B, Nh, L + 1, 2 * L - 1))
final_x = final_x[:, :, :L, L - 1:]
return final_x
# Example Code
# tmp = torch.randn((16, 3, 32, 32)).to(device)
# augmented_conv1 = AugmentedConv(in_channels=3, out_channels=20, kernel_size=3, dk=40, dv=4, Nh=4, relative=True, padding=1, stride=2, shape=16).to(device)
# conv_out1 = augmented_conv1(tmp)
# print(conv_out1.shape)
#
# for name, param in augmented_conv1.named_parameters():
# print('parameter name: ', name)
#
# augmented_conv2 = AugmentedConv(in_channels=3, out_channels=20, kernel_size=3, dk=40, dv=4, Nh=4, relative=True, padding=1, stride=1, shape=32).to(device)
# conv_out2 = augmented_conv2(tmp)
# print(conv_out2.shape)