-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsample_3.xml
178 lines (169 loc) · 54.3 KB
/
sample_3.xml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
<?xml version="1.0" encoding="UTF-8"?>
<quiz>
<question type="category">
<category>
<text>$course$/sample_3/Exercise 1</text>
</category>
</question>
<question type="multichoice">
<name>
<text> Q1 : private_fall_quiz_2_q6 </text>
</name>
<questiontext format="html">
<text><![CDATA[<p>
<p>Looking at the following plot of market demand and cost curves, which of the following is/are true?</p>
<p><img src="@@PLUGINFILE@@/plot-1.png" /></p>
</p>]]></text>
<file name="plot-1.png" encoding="base64">iVBORw0KGgoAAAANSUhEUgAAAyAAAAJYCAMAAACtqHJCAAACrFBMVEUAAAAAADoAAGYAAP8AOjoAOmYAOpAAOv8AZrYAZv8zMzM6AAA6AP86OgA6Ojo6OmY6ZmY6ZpA6ZrY6kLY6kNs6kP9NTU1NTW5NTY5Nbm5Nbo5NbqtNjshmAABmAP9mOgBmOjpmZjpmZmZmZpBmkJBmkLZmtttmtv9uTU1ubk1ubm5ubo5ujqtujshuq8huq+SOTU2OTW6Obk2Obm6Oq6uOq8iOq+SOyOSOyP+QOgCQOjqQOv+QZjqQZmaQZpCQkGaQkLaQkP+QtraQttuQtv+Q29uQ2/+ZmZmgIPCgIPKgIPWgTPegdPqlKiqlKlSlKnmlVJ2leb+rbk2rbm6rjm6ryOSr5OSr5P+xIPCxIPKxTPexmfy0Kiq0KlS0Knm0VFS0nd+2ZgC2Zjq2ZpC2Zv+2kDq2kGa2kJC2tma2tpC2tra2ttu229u22/+2/9u2///BIPDBIPLBIPXBTPfBdPXBmffBvPrBvPzBvP/EKirEKlTEeXnEnZ3Ev//Ijk3Ijm7Iq27Iq47IyKvI5P/I///RTPDRTPLRTPXRmfXRvPfR3v/TVCrTv53T3//bkDrbkGbbkP/btmbbtpDbtrbbttvb27bb29vb2//b///hdPDhdPLheSrh353h///kq27kyI7kyKvk5Mjk/8jk///wmfLwvPXw//rw///xnVTx/9/x////AAD/ADr/AGb/OgD/Ojr/Omb/OpD/ZgD/Zjr/Zmb/Zrb/kDr/kGb/kJD/kNv/pQD/pTr/pWb/tAD/tJD/tmb/tpD/trb/ttv/tv//vPX/v3n/xAD/xGb/xLb/yI7/0zr/05D/09v/25D/27b/29v/2///3vf/353/4Wb/4ZD/4f//5Kv/5Mj/5OT/8ZD/8f///7b//7///8j//9v//9///+T///r///z///843lcUAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAgAElEQVR4nO2di58lx1Xfrzy2EVojY8e+A7uSZQS2BnY3Wk8WJAURCCSaJXgAL6vIxHkgBSuJgYgEkjivWaSBhGAQsgxGxPFIyjjBZLATO1jEg+1NItnxKEiWcKKRs+x6TP8j6aqu6mc9zjld3X26u87nsztz78zvnuru851611kk0aJFs9pi6AJEi8bZIiDRojksAhItmsMiINGiOSwCEi2awyIg0aI5LAISLZrDIiDRojksAhItmsMiINGiOSwCEi2awyIg0aI5LAISLZrDIiDRojksAhItmsMiINGiOSwCEi2awyIg0aI5rGdAFjR/G1HVWjWCInJURUDmohpBETmqIiBzUY2giAFU+6F9RUDmohpBEdur9vehhERAompAZwOp9vfBhERAZqHa2+vRGXvVfgQkqpIaIHBERnVhFBWGjwjILFQYPkZ1YRQVio8IyCxUEZBctY/jIwIyBxWKjzFdGFq1j+UjAjID1V4EJFPh8YiAzEGF42NEF4ZUEfCIgMxAheRjPBeGMxIeEZAZqCIgwmh4RECmr8LyMZoLwxix+kD4ioCMVIXsobdzxlVFxiMCMnUVno+RXBjCVPXRra9AgFx52z0wdxGQMKoISF59UHxt9gvIE39uuVyevDt7cXRxbbn85tvUiwvpi1PbhbsISBAVgY9xXBjc8uYVwdfm5mafgFxcZnareHF4JntxWry4kr34pl/M3UVAQqgofIziwsBW6n3gfW0KA/5uAEAOlss/++/f9ld/YbmaNrOOzi+PbydH2Ytka3liOzk8vzyxq91FQAKo9mYPSLl3jva12TMgO8sbZB9kS1QhB6q6EG8mL63JF1fOrOoeSgQkhIrExxguDPh71cFdrK+Mjx6bWFvL2/NOelqB3F78RFIiv96q3UVA2qtofIzgwoCq2uAu0peqP3oERNcgwq6cKfobGTrCDhQoEZAQKiIf/C8MpmrMDaJ8ber2VY+AvLS2PP2kAuSltRO7j3/7cnlcDGkdnV8t3lXuFisrBBfsntKQqnkD0pwbxPjK+eh1mPdgTY7y7iYShQv5kFYdkOuEnTu3shGthUk+hi7EUKbnBommuh/SegQkOXpQILJ6mxzRWp7eTY4uilGsEiC64bVYpICsoB1w+zM2pIpYf/C/ML/KvPIK7KsyetX7TPrZ9WXa4zhQsyFp9+MGcxPrHIUQTk9pYBWZD+4X5lXZtkVBfVVHdwdYanJxeWL3pbUSE3ZAVpAf37ga0BI1Ps82oGqugNh3DcJ8bVb5GAIQ0ZDKG1PyG9Mo1jkKIfWrga3h5PJsQ6pkB4Tki/mFeVSOde0gX43Jwf4AkdOAGpC80jgQs+d6/qM8D3JOEbKC8REBUbY3U0Bc69oBvurVB0wlrT0gR+fT8BeA7AgmtlRlIafVjTPpGpAVhI8IiDLZwJofIM59H35fprUlPTax8rVYokH10ppYvJuNYqmFWfW1WARCTID4CWHxbIOqsg7I7ABx74vy+TJUHwCVtpCreeUCXjkpslyuyt7HoWk1rwAkWUEhYuqkR0A6dsZG5dk36PFlWZrYaydd7gc5rvaDHIotICe39Yv0J6d2C3fCH56QCIg0NYI1L0C8287dvmxLdwcYxQK504BoQlZAsgiIsL0ZAmIf3QX5sq9s5wyIIgRRiURAktIarPkAAsDD5cvc+/CpqjbIoQ3nKoSs+GXmO4dWgYyram9+gEDwcPhy8cEbEF2FgCuR5tXMDpDSLsKZAALDw+7LvXGQNyB1QlY8sghIeZH7PAAB4mH15dlYyxyQghBQJRIBKW8CmQMg0OrD6su38XwUgIAJMQNCbpyOT1XZJDUDQOB4WHx5D2bgDkiZED8ilvE/j7MxRYTb9uYFCKL6MPtyds+tKqMNd/RoCRBvTyQCUl7kPnFAcHiYfAH4GAEgGEJmDkhtF/qkAQFNfbh9gc69GgEgSQkQTzMrAlLeJDVhQPB4NHwBj4UbAyBwQmxrENzOxhAREKtvIpwuIAQ8ar4graumymF8AHERYrqaCEgnzoZUUfCo+gLzMQ5AwITMGpDGLvSpAkLjo+wLcerueABpELLSlM0ZkOY5cRMFhMhHyRfmVOpxAFKrQqyE2AChLvMck6p5jMk0AaHyUfjC8DEWQOqEWJpZxquZByCGY36mCAipe171heJjtICYEYmAtPfF7cLKRhndrfmCd8/LKr8NDYiVkJXyW/MFxHRO3NQAyfFo4QvLx7gA8RIyW0CMJ7lPDJCi9qD7wuIxIkBMhDSaWVZAnIRwjQi4ypzpYFKAlBtXVF94PMYOSJ0Q89VEQII6G0RV6XsQfVH4GBEgEEJmCoglVc50AKn1zUm+0L0PnK9BTjWpmZ+QeQJiSyU1GUDqQ1cUXzQ8egZEHhx3Mjs4TqVGX6pTeZfVoxXtgFgIWZHf2wGhHpg0ApU12fNEAGkO7eJ9EasPhK+QR4/KI9xfWisxUXkh3Rn9GQEpE2K5mhkAEs4XnwuTZpr5QPsi49ErIPnh1fIM9yIXSP2FdGf2ZyakaGbNERB7rs4JAGKeGUT6UtVHt9cVMA20zHig/ldWeSHdWfxZCNGIzBAQRy7b8QNimTjH+dLVB3tARB6pvJOeZ9BpvMjcIQFx78X1dEIYRQReNWFArOtKUL7y5hV7QHQNIu3KmRMPrevT3SsvMnc2f3RC7AVjExEElSsZ+sgBsS+7Qvgq9T7YA5L2xE8/qQHR3XKZnbDyInNn9WcDxLnTcNqAhPXF5MJcyxLBviqDV+wByXLmnLx7V34v86S/fEH22CsvkuQ6YdYk74IQ808yQmx55alJ5VmbTEU4RcvwaPkhunfeynoEJDl6UCCyeluStbeEye555UXmzu7PXoXY65DJ1iDOZM/jrUE8q9qBvmqDu/xrkETMpJ9dL7WkVJbb5gsHIBRC3L10BhFBVLmToY8WEN+mD5iv+uTHSAC5J7lYZiJPmF594QPEQsiGras+TUBcPXSyr+EvzLspCuSrMTk4GkBqTFRogdQgjipkwzaYNV1Agvsa+sIAewYhvpqT59wBkVnQNSBH51U7S8yhV14od05/VkLE1RgJmSQgHj7GCQiAD4Av09or7oCkGNwqAdkRTaytjIWMjcqLzB0dECMiIfp87FQTBMTTO4f6Mq5N5A5IsRZLYCAmRXaTw3XZH6m8yNy5/dkIUVdjaGdNEBAfHyMEBISH35d5bSJ7QPLVvKfFix21fne78UK68wNiIkRfTZOQ6QHi6aGTfQ13YbDqw+vLtnSXPyDZfpDj2X6Q5DB9sZpWHM0XiRcQGyHF1dQJmRwgfj7GBggUD7cv+86PEQDSckdhybyA1Alx3fwISABZWxW4+nD7cuyMmhUgFkLKV2MgxPJZYwQEwMeYAMHg4fLl2hk1CkCg5gXETEjlaqqETAsQCB/jAcS8LYrgy7lzcI6A1AmpXk2lqz4pQKzb0AP46v/CkHjYfbl31s4MEGMVUruaMiHTA6QjX31fGBoPqy/PzvO5AWIipHE1BSGOpzA6QGB8jAMQPB4WX96DS2YHiIEQw9XkiEwHECAfYwCEUH1YfPkP9omAmK9Gt7MiICRnnapIeBh9AQ72mR8gTUKMV6MImQwgUD7YA0KrPky+QOdezRCQxposy9V4CBkhIB366uvCyHg0fcHOhZsjIHVCbFeTE2L86bgAAfPBGhDs1IfDF/RY0dkCUiLEejWaEOMPRwUIuIHFGhCNRwBf4GNFZwlIAgTEScjoAOnUVw8XVtQerX0hTqWeJyBVQhxXY9ut7lY5bBgVgg+2gJQaV219YU6lnjEgOSGuq1mxIjIiQBANLK6AVDof7Xwhqo/WvnzGFpAECogdkZEB0rGvji+s2jdv5QuFx3wBKRPiuZp9MyLjAQTFB0dA6mNXbXwh+Zg3IIoQHyD7+yZCRgMIqoHFEJDm0C7dFxaPGQNSIsQPiEak/PZYAEHywQ0Q09QH1Reu99HOF8wmAUi2HqtBSAQkgMyrMs4MEn1R+JgxIAUhIEAahPABZA9rHZSwm9thmTin+aLgMWtAckIggDQJYQQI9uPGcnCcbV0JyReNjwjIOWA9n9RnDdkAguZjJIDY111RfBH5GAcgwU41qRkSkCohEZAAMofKsSyR4IvKxxgAkQfHncwOjrtyppwa/ejC2nJ5artwh/WXEQLrKcrvSoREQALIrCrnsl20L1L3nOgLpQp59KhMI6XzEkpAFC1FWgQ0IBkhsLFG9W2OSAQkgMyi8qxqx/pqwQd/QPLDq2UmwiLVQSKOdz+xnRyeBx9ebTA8IHk7KwISQGZUeXd9IH0pPNg8sJIFTAOdZSIs8hHmmaVkBhHlDu/PkXiqZPsGQtjcbxnuz+19THy5vPcJ8eWpvb2933tBfHf140/r37ucvZNwB8S/KQrlK6892DywkgUAZGt5e9FJPzq/WnTXdRLPHUgST6uBAKmd3WBfA++17gCR4f+cAOTqxwUlT+09Lf7/VPGLlz5RVoQtYbALg+wZRPgqta4mCoiuQaRdOXPiofW0x74tXmwhM0xZDFyFlF7SCekOkN//dPrlqd9PIfhkBsJTnyjXGkmpNmEMCGhLLdxXufcxUUBEmpwnNSC6jy7QyGsTYI5Cm+HbWEkLQroD5H+IuuM//8En0mbW0/nPBCTpG3u/998FKboKYQsIpPrA+Kp0zicKSHKwJkd5d+X3S5FU6uULosdeB+Q6YZSc77Kf7jPx3MqvVT+EgylA/ud/Sf//RMrAc0WtcfXjnxZ8fCr9J97UP9kbusgWy/AI93kZH+E+D2E9ApIcPSgQWb0tKbodoq9eAgSSBtpuoH564w+bYzOuy7qrQZ5+6unk0qcFIB/LfyQrk0vi9SXBhq5beNYgwOoD7qs2uDvVGiQRM+ln15d5qs5E1CQndkM1sWCNrOazoxHSISCXPpV88ulqDSKJkM0s+aasUBKegMDxgPqqT35MGpB7kovLSmp0kRM6FCAbpCpkg9QR6RCQy5+4/DHRzdD1RNpBHw0g3qkPtK/m5ODEASkaUoliItAoFh0QSl+9Q0CS//oHn5L98KfUKNbHRtPEQuEB8bVpmDyfJiByGlADkqdEl0zo+Y928yCJuBoAIeZtbeh2VpeAPLX3aQlIaR7kk58WLxud9PAlbHNhSDz8vkx4TBWQlIlbJSA7S1lp3KDevD3QTLqwDVA/3QgImpAuARHxn43kflLPpMuXVz++t/ffxMunWA7zYvHw+TLjMVVAirVYGRNimPdwXfZHUkyOt12LJW0DNJJlBgTbzOp5LVY+USjgYTlRiK4+fL6sKxMnCki+mve0eLGjFvNuixeH7VfzSoMDYjxaA0VI34sV9VKTonbxKfoEBNc3B/myL9ydKiDZfpDj2X6Q5DB9sZrWItmLC+lPTu0W7siAEKqQ4h5gCOnifrviXdcaKSDsFivuE/lw+XIsbJ8sIN3tKFQmr8ZPiBUQDCGdAII6tSThcWjDPhkPly/Xxo8ISHtAnITUnmb5HsC76t3c74CHmvQOSEhfzo1REwYEam0AQVchlXsAJqT7p1Qw0GdEIGVt8LD68mwcjIC0A8RPiAMQcDOr86dUqiP4ApLjEbKIvo21EZCWgHgJqf7Ja9wDECJdP6VyG4orIKXKI2ARvfvOIyBdA5K4AQG1syIglYnBYEUEHMsQAWkLCKgKaaoKAxDS8VOqdMJZAlLtewQqIujYkghIa0B8a7IqbSzjPfAS0gMgffmiyOpd8zBFhB3rEwFpD4iHED8gXkK6vd/VQVx2gDSHroIUEXjqVQSkc0ASQOvAQ8icATGM7IYoIvRUuAhIAEAQVYjtHrgJ6fR+12YBeQFinPgIUETwqYkRkFCAwAix3gNnV73L+12fJmcFiHlesH0R4aeKRkBCAAKvQuz3wEVI14D05Qsps82bty0i5tTdCEgQQMCEuO6BnZAO73djmRUXQBzLSloWEcNHBIQRIHZE5geIc9lVuyJi8IiAJIEAgRLiuQeWdlZ397u5TpcBIL5F7W2KiMMjApKEBMROCHgZkZmQzu63YSE7J0CCOpMqLB8RkFCAAAnx3wMTIV3db9NGj8EB8S9qJxcR1fto6atD1bwBMREyJ0C8eNCLiMcjApIEAwRGCOQeNAnp6H4bdwoOC4ifDrIzQvVB9hUBMV2NkxAEIE1Curnf5p20gwICwYPojIRHBCQJDYiTEOg9qHfVO7nflq3mAwICqj5ozmjVB81X56oRHdpQtWCA1AnpDhC0iuYLIoPiQXFGxWPCgJTzpEvTx7lXk6YnIQEBEAK+cxVCurjftqNKBgIE0DenO6PzMVlAKnnShR3pw0YrSdOlu3CAOAnBAVJBpIP7bT3KZwhA/CO7bZwpPDiGOk0VPE+6sJ2lAqSSNF266wkQGQaYO1cQMm1AkHggneW9D46hTlMFz5OeZPVGBkg5aXrmLiAg3ioEdefynkj4+20/C65vQNB44JwVvXOOoU5Thc6TnsgG1tmsD1JJmp65CwmIc00WLgyEKUK6AQSvovlyy/B8YJyVeh8cQ52mCp0nPRHA3KA66ZWk6Zm7oIC4CMEDAjoUyGaO++04S7RfQAh4YJyVe+ccQ52mCp0nPUvfqQApJ01X7sIDEpAQ/5EnVrPfb9dhu31GBAkPhLPK6BXHUKepQudJz9JJKUDKSdOTFnnS7ebIoC57IVhTlUi7QlVN8BHy82im8ejMQcZHZx8f3noEpJwnPeuXK0DKSdOVu7A1SOhGVkKuRKwldB7W3tOfTELfHOmsPnnOsS6gqULnSZeJCkt5n6UdLNumgbb+xNHIIkYEjRBbCd3ZDHqJiDZ4AJ01FpdwDHWaKnCe9JfWZGuqBkiRIDo4IOGrkLDZ1d3ZPnqIiAKP7pw1J885hjpNFThPuspQWE1MWOIlPCAOQmh/NjdIw1mWEnqy4fQISHfOTGtLOIY6TRU4T3oFkGrS9MxdN4CYCdmgAkIgxFxCX7qoziOi3Lrqxpl56S7HUKepQudJz0xVGZWk6Zm78IDYCdkgNbIyX1hCjCX0plPrOCKqnY9OnFmWtnMMdZoqdJ70zIp5kCJpeuauf0CIA/9IQhgCUu+bd+HMtnSXY6jTVMHzpEvTnY5K0nTprgNArIRskPrp2heOEFMJ/fk4u3u2hqGrDpxZl7ZzDHWaKnyedGF5r7ySND3pCBAbIUKFJyT3hSLEUMLO8tX6VcaR3fDO7Fs/OIY6TTXaHYVls+y/bQkIqqveLGF3CZ19KsvER3Bnjq1RHEOdppoEIJYqRKrarM5DEGIBBK2i+SrbvoWP0M6cO885hjpNNdZDG2pmJCQHBEVIxReYkEYJIXx08GyteAR2tuk+mYFjqNNUEwHESEimagUIObs6iI/Qz3bfgUdQZx48eIY6TTV9QLCE1H3B2lkMAHHjEdCZFw+eoU5TTQUQEyElQNrsMQURUlPB+Aj5bH14hHMGOfaKY6jTVJMBxLAmS6taAgJqZhkAofmiqfx4BHMGOtaHY6jTVNMBpElIrkIRYvLlJ6SqAvIRHpDuncGOveIY6jTVgIAgzhcLAEi7c268hAwKCASPQM6Ax8JxDHWaasgaBE4I7GrqhBSq1oB4CamooHyEebYwPMI4gx6byDHUaaqpAVImpKRCEGLx5emql1XAHrrdF0ZlwGMfZQhnte75Js2AFwa2CAj4atyAtDxr001IHZB2vqAqY5Tjpn0QDbMGHxg/pU+B+EJYBAR+NVVCyqr2gLibWSUVnI+Wz9ZSCSDXnoEBqf39J/KRCgG+MBYBCQEInBCXLzsi/QNibSNhAXH/vi5io3lE5SMC4nTXLSBVQppt9da+rO2sQoXgo8WzdfQhsBtgIIAYug8RkC6sD0ByQqoqKCFuXzZCchW8h+71ZVc5u9gdAGLqXkdAurCuAakQYgAEEDw+X2ZCKoD4nQB9Gc03AhUeEOPoUwSkCxsQECghXl9GQrQKxQfl2foHaPX7z+7/kf5mf/8P/5/47upn/6/+rcvZOwkAEPPorH7jo5s/kSRffd87shfvkO9sbv7wr4mXX33fv9S//if/7NdqQqMvgkVAUPegREhdBSPE78tESE+AQOYv1E+ufvZ/fSb7+rlEQCLQePaLxa99+XPV37cW0TJ7od756vv++Y98OIVC/CeB+Or7fvQ/CUgEGh99R/H7nxdvl4RGXxSLgODuQUGIZUlGe18GQpQKxwf22cKm99TPvvyZr0govpCB8OznyrVGUqpNPIDYZvfUW5//kX/311MW/vhviArij//mh5MPZSB8NP1S1BpJqTaJgLjc9QTIObMKQgjEV7OrnqlQPXSgr9ygk9/qx1/43NXPphXG5f28VSUhSd/Y/8P/I0jRVYjz4+yz3+q9D/3o78rm1YfShpaoMf7kn+atKglJ+sbmD/+qwEdXIREQl7vuAUkcgECGskC+GoQUgMAKifCVWQkPjyq7vstpD+TZtI31laLWuPrZPxLvfzH9J97UP3HcD9fqkOzNP/mnP5E1r0T4i0oiq0qkffV9PyF+QUAjuiT6JxEQl7seAMkJMan8hAB91QiRKiwf4Ouqtq1AgHxZwJHWHl/5TP4DWZmI95MvCzZ03WK9He7FU9nbn0/h+GPRxhLNKdHCEv+Uycrk85IeAYiuW2YJCOlUk64A0YQYVV5CwL4qiHQJSL3rAQLkC18UVcYXyzWIJEI2s+SbskJJrID41hZmP/jQO/QQVtrGEn3yUg0iiZDNLPmmrFCSWQIiD447aTo47ujC2nJ5artwxwMQFyFwX+V2llCh+QD42t+v4wED5HKm+ExeT6QddBQgGg+rM/no0g6GsKyN9buiG67ribRGiYAo00eP5imfj86r03ivnKllQugHEEWIWeUjBOGrRMgGvocO8GXCAwbIs7JlJdpYz6pRrM+gmlh57eEGJBvdVW2sX5Wtq4+qUawf+XBsYmWWH16d53zeKfKkn9hODs9bDq/uDpDEAYiPEJSvnJANCh8eX0Y6/CUUvysHsLIvpXmQL/xR9pa/k160rpyAqPlB1cb6W+pFPg/yITWFOPNOuk4DnWciFMlt1enusu6QGUSUu4o/MCH4eyCze1p+5h4sxfnShAQHxEaHv4Ti17+iaodnBQRf2Fcz6XJg9+pn9/f/t3j5rH2Yt9T7cAIiq47UPioA+PymGuD9kJ5JlwO7X33f5ua/EGx8dK7DvFvL2yud9LSBdbaaxHPHksRzIEDchCB9KUI2KHzYfTmnBEGddJPlE4Wi8nBMFJZ75+4mltvyiUJRecx3olDXINq2ljfkCXTcGaY6BMSVu9BNCNZXRgiJD3cj0FpEMiD5UhMBiHWpSXX0qg0g+VITAch8l5qINDlPFoAcyFyeApCj86ppZctR2DUgdkIcHRG0r5UcEazSNc5Gr+McgOhaIwUkr03cfDgAATw6XWukgMx5seLBmhzl3ZUvZIfDDMh1wsq53MWD6CxRvGxk2S2LwCCeNCEhPqtEB/0jUE+v5ifDA+KHuN69w0eOMmBxg8yDHD0oEFm9TXwvu+oNQMxpoLusQTyNLHsdQvHlOxTIZlVf5kFdn6pp+yirSJtzgw5nmzSjX9gQqmAz6WfXZY7CLJMngyaWFxAbIQRfaeuKhkjZFxQPakQAZKYI5hi0faoCLjW5KDsfkgkWgAAJCZBnZi8nZAUnLHzB8egOEONfeI5B26cqICCNPOmDjmIl3n66hRC8r2wEi0KI9gWHo6xCmk9mbgBxDNo+Ve0Bkb1yMyB6/mOAeRCp8hJiQoQGiFDhCdkolQFIR9IVIJYOAseg7VPVHpCj82n4C0B2ihUleZ70wWbSpcqS3LNijchE+5L1h1ShCdlwTZg7VCRzy2wdaI5B26cq5Fos1aBKckBSdo471mJ1Doi/kZU0KxGsr70CECwhmI5HyboAxDrAxDFo+1SFXM17On9H98oPnat5uwcEREgNEQoguQpBiGOw1WPhAXEMwHIM2j5V4faDHDftBzm8kP7k1G7hrmdAUISAtiPVTS0x0SpYV50OB6GEXplzgoJj0PapGjRPel+AeAkpI4LztVcDBEBIOzrQJfTJPPN3HIO2T9XUAYESUiCCByT3lZkTkSodfUaEWead3uYYtH2qBs1R2AcgsEaWMMrf9HwNb6WENkIadcfggHhXf7AM2j5V0wcETAih3bNnBsRUiRgbVkMD4sWDZ9D2qRo2yy2UkHb3AFqFoIddS5tA6iWsEmLrdgwMCIAPlkHbp2oOgMAJQXagHYBoQvbrZi4hykIBAuGDZdD2qYqA1A3OSHkXYaOE+/sZIs5PGxQQEB8sg7ZP1SwAQRGyAWWkssu2VMJcuFJBxF1CjAUBxN89b+NsOqr5AAIlRKm8kOw1Aak3pwpCvCXEWAhAoHywDNo+VfMABFOFFKpG/6FCS8aH7XcqiEBKiLAAgEDx4Bm0fapmAgiCkIovT/y7LPsANyEDAQLHg2fQ9qmKgPh8UdFQ5iRkGEAwfLAM2j5VcwEETojJFwkNZS5ChgAE3Pto42w6qlkBAiLE68vIhEPlWJs1ACA4PHgGbZ+q2QACJgTkq3GOoktlJ6R3QJDVB9nZdFQREIqv5jmjbpWNkL4BQePBM2j7VM0HECghXQBiQ6RfQPDVB9nZdFRYQJ6//1uuT+0bv++3sCXK3A0ICJAQgC/DQdVelbGd1SsgFDx4Bm2fKhQgV+8/tsjtmrc+hi/W8IB4CfH7Mp3k7leZCOkzImh8sAzaPlUIQCQer/2293wwtfd87zekiLwFjciggMCqEBggeJWpmdVfRBDx4Bm0farggDx/0+JVP1B+49H0jZ9BFEm6GxQQECFeX8ZMIKASNgjpKyJIvQ+qs2mpwIBcvrFJw/M3veIBcIkyd8MCAiGkQ0AahPQUES34YBm0farAgFz9DdO7v4FsZNUAgRLCCRBzKilgCWuE9BMRCg+O4cdfNeipJv0DAiDE48uSaw1awmpXvZfNiEMAACAASURBVJeI0NUHx/Djrwp3cNxJdXDcE+vL5ep37srvVZ704mjFwQHxr8ly+7LlIgSXsEJIHxGRN684hh9/FRaQq4+++frrr3/dD5Tf00ePyiPc1fnuxyUSIiE0M0C8hHQMSKWZ1UNEFN0PjuHHX4UE5JKeCHnVXfl7+eHV4gz3l9ZEJrbD9SwjSJEYRLsbOSDWZLaoEuaIdB4R5e45x/Djr8IB8tyxxau+/4Mf/OD937Aoxq90GmiZnXArq0dU4oOtPDGIdjc8ID5CXL7syZ5xJdTtrK4jojJ8xTH8+KtwgNy7uDYbtrqafqffFHmk6p30K2cEIHkOtsIdE0AchDh87YUCRBPScURUR3c5hh9/FQqQyzdeo1tWzx3LqxBdg5QtO979ypkTD6Vd9pPbhTsGgHiqEB8gaJXZPLvVXQb0VZ/84Bh+/FVIQHIqSt+mPfHTT1YBeXxNJtPRffQisw4LQNyE2H05+CCUkE4IzFdjcpBj+PFXYZtYt6jvnjv26nyO8GBNjvLu6tdby+WqHPNNu++nd5OXLyyzltZ1wqrZ3MUz7D+HvAAEr5J8BCyFamV1Y6r30dGnT8E6AeR53cZ6/qZrimGs5OhBgYgYvpKvfuw71par35Vkja+MGHMSz6FqEGcVYlW5KhBSCal1CMCXaW0Jx7/P/FW45e7f8y2LxWvf8p6/k3551c3CvlVVI1fedna91JJKnlgrvUhrEnOe9EEBsRFiUzn5oJXQsVvdZV5f5rVXHMOPvwrZB1nUTHdERCf9YpGrs8xEkg/6JmwAcRHiAoTky2E0Qny+LEsTOYYffxWyBrm5ZkUNck8Jg6SUpbD6YryAuPkgl5BCiNuXdekux/Djr2q/FktmQdeAHJ1XTSvBRP6imFDnAoiDkH4BofREnL7sK9s5hh9/VXtAUgxulYDsiFbVVt4vvyHRL3JQGAFiJ8Ss8vDRpoTodpbLl2PnB8fw46+Cb5j6C4bdg1f/9gOltVgCAzEpspscXVQLs8SLw/WiP8IMEBMhRpW7h+7z5VFhCbH7cm6M4hh+/FXwDVN3NLagX70vmwzRq3lPizcPsu9XZZ2hlvZ+03bujg0g1irECkgLXz4VjhCbL8/GQY7hx18Fb2Jdffdi8bqfLl4/+ubF4vUZMnI/yHG1H+QwfbF6arv0Iq1Fcnd1fzBCOrkHFkJMKi8fbUuIIsTiy7exlmP48Vdh+iDP37lYLF75jWL06lvEsvfXFY0u6o7CIQGxEDIIIChCzL68+845hh9/Fa6T/qX78oOxrnl9+ei4aQPi56N9CRGEGH15+WAZfvxV6FGsL73n/ptv/r6foh2syAsQMyFNlbeHDvHlVcG76iZffj5Yhh9/1bBn8w4MiHFNVkMF4SNECcGEGHwB+GAZfvxV8wbERMhggICbWQ1fvu65RQayuasiID5AQHyEKiEIkZpqE8YHy/Djr5o5IAZCaioYH8FKCGlnVVRQPHiGH39VBKROSFXl2IaO9gVSAQgpqeB48Aw//qq5A9KsQgyAhPIFU3kJKVQIPHiGH3/V7AFpEFJRQfkIWkIfIbkKgwfP8OOvioC4AAHzEbaEHkK0CscHy/Djr0ID8uid17/2AePSXpA7foDUCWEAiIcQpULywTL8+KuQgDx3k9xne/nGxRvQRZLumAJSIqSkgvMRuoTOrnqmwvLBMvz4q3CApGC87u/d+IoHxMreW/CF4glIjZAaIIF9QVUrDkSECtU99zmLKruhjx5VR8Y9XBw9ijG+gOSEFCoEHx2U0I7IBi1nFMfw46/CHdpwxzV3KUBKR49ijCUgiRkQRAOrmxLaENmgpeTkGH78VfijRzNASkePYownIBVCKoB04AujMhNCwoNn+PFX4Q+vDluDwAjp/M6VCNEqFB+dldBACJEPluHHX4Xtg7whA6Sc/gBjrAE5V1ahGlgdlrBOCKX3AXYWVQ1DJ9B5/W/e+Iq//5s3Lcpn88KNKyAlQkqAdOQLp6oSQsaDZ/jxV2HnQfSW22tIo7x8AUlqgCD56LKEJULo1QfUWVTVDJ3E8/7rxckNbwm15ZYNIDkhUoVsYHVbwryrrvCg+WIZfvxVQ6/F4gNIUgIEzUe3JVSE6OojAtKjKhAg5FNNGAGiCGEIiEZks00+Z5bhx19FA+TqBysv5cFxJ9XBcU+sL5er37mbvTi6sLZc6lPkkrEAguej+xKWeiIRkB5VSECe//Ny+qOUzTMpjh6VaaTUaaPHZSaEK2eyo0fztAisAckI2aDw0XUJ05tUTBpGQHpUoYd5FSClYd788OrsvGqRie1wPTvXfWt5Yjs5PG8/vJofIOc2oLts2/lCqWTnIyckAtKjCjtRqFN3lhYr6jTQMhOhSkeYJdNRKXVkBhHljjUgSQFI977gqnxwVxESAelRRc2TXlqLtbW8vdFJv3JGoKGTeO5Yk3gyA0QSQuGjyxKW5j4yQiIgPaoC5EnXNUjZsqRrW94MU0wB6cUXTFWdGwQcCtTGWVQ1DLncfaEn0C/ljS2ZJufJKiCPyyS3R+dV08qeo5AbIIqQfnxBVPWp8xaEcAw//ipcH+TSYvFnxBz6l+4/lqOSVhBrcpR3V7/eWi5XxZhvHZDrhNXzuYvnP0QeeYtl/XQupqqP8luqqz5UiaZjnQCS3JcngC7vST96UCAihq/kqx/7jrXl6ndVALGlgWZXg+y5UqgH9uVVGVdeObert3AWVUbDThQ+f6dYrnhNKXeOtCtvO7u+zFN1JskToo01wibWHidAbCsTiYRwDD/+qoBLTS4uS6nRD5YiDfQIASESEr6E9oW7tOzqLMOPvyogIEVDKlFMQEex2BxMLkZ4N0iEhC6ha2H7Bq2dxTH8+KvgWW6/51sfu/o9Nxf2rWoUS04DakDylOgSED3/4ZoHAVUhPd25vQIQLCGBS+jc+CFUBEI4hh9/FTxP+o3yvLjC9DxIysStEpCdpaw0sspCfoXMpHMDJFUND4h7X1SmQhPCMfz4q+A1yAd+6rGrH3hPYT+l50HytVii8hCTIrvJ0UW5MCtl57hvLRYjQLIp9A17CvWAvpwqz75BpcISwjH8+KtC9EH0at7T4sVB9v2qbGkd+lfzcgSEQEjIEvr21WoVkhCO4cdfhQPkvtcZt9rK/SDH1X6Qw/TFqt4Ccngh/cmp3cIdY0DUGqzBAfHuO89VOEI4hh9/FXUtVs3oOwrZALJXAgRPSLASAs5lKFSorjrH8OOv4gEIgwSt+SL3TDUQIJsAPsoqDCEcw4+/CtfEenhx7WP+33K5M/hjCQiWkCAlBOFRU8EJ4Rh+/FW41bwfuHOxuL42D4IytoAUu6QGAwSIR8MXFBGO4cdfhWxiGeZBUMYVkNIuQq3CEdK+hFA8mr6A7SyO4cdfhaxBTPMgGGMKyJ4FEDghrUsIxsPgC0YIx/Djrxr84Dg+gNRVvQKC4MPkC0IIx/Djr0IB8iVatVF2xxKQyjENhQpDSMsSYvgw+gIQwjH8+KsQgDwvEnguXk3Mb6vccQSkeozJEICg+DD78hPCMfz4q+CAiIPdX/tmYuc8d2cBxBMcwwCCIaRNCeHdc5cvLyEcw4+/Cg5IdibW1TuICaCVO5O/gQGpnYNVAwRICL2E4NFdny9fV51j+PFXwVfz3pGdiVU6zoRgXAGxqOCEUEuIx8Puy0MIx/Djr0LtByl/pRlDQOrnxPUJCAUPly8nIRzDj78qAuICBE4IqYQkPNy+HIhwDD/+qtkD0jhotKqCEkIpIQ0Pjy97O4tj+PFXzR2Q5knVBkAAhBBKSOXD48tKCMfw46/iAgh4gTfCoIA4VZ0BQubD68tCCMfw46/iAIi/CunsHhhOcq+rYISgS0jnw+/LTAjH8OOvQgCyqFqw1bzMAYERgiyh6p53dV1GQjiGH3/VvAExpQLpAZB8dLezZ2sihGP48VfBZ9K/9MGqkTKl8wLEmEuqqYIQgihhafKju2dr6KpzDD/+KgbL3QcDxJxrzaAKCUhlbrDDZ9skhGP48VfNGBBLsk6Tyk8ItITVucFOn22dEI7hx18V8PBqkDs+gNiS2doAcRMCLGFt7KrjiKgiwjH8+KuCACIPjjt5d/FCHxyn8qQXRyvaAQGeBIUxACBQVSBA6mO7XUdEhRCO4cdfFfLo0VtLL7Ljql9aAwHirUI6uAfWZM9mlY8QUAkbcx+dR0S5J8Ix/PirAgCSH14toDiQmdgOz2dMFIlBtDsugNiTodsBcRECKWFzbrCHiCgI4Rh+/FUBANFpoLfSKkTnB0nbVuLrVp4YRLtjAoitA2JXtQbEtHS3j4jIKxGO4cdfFQAQkUdKd9KvnFGtKYlGnoOtcMcJEJzKTYivhOadH/1EhCKEY/jxVwWsQSomAbly5sRD62n3fbtwxwMQBx9OQOyEuEto2xjVU0T4NuMGdTYxVQBARM6cJ2uAZEmldB+9SH/LCBC0ykmIq4T2fYO9RQSdEI5B26cqxCjWwZoc5d0tvbUje+dp9/30bvLyBTWmdZ0wY1L3bOVebyZTEaJNAkLwphcmDmoZIcOWgZf1CEhy9KBARAxfaWQyJHbyhIWOJJ7SPFVI4D8SrgrE4ctVhdhVrnXtff7JJFYiHP+q96kKNpN+dr1oSR2srd5e/unB0p4nPbNeAXHy4fLlIMSqcu776DMiiD0RjkHbpyrgUpOLGoOdZW3wqsigzgEQVw/d7cux/9amcu+L6hWQDRIhHIO2T1VAQDQGF+t8ZEnTM3dMACH6QgPi2TfYLyCkZhbHoO1T1R4QOWBVAHK0tTyuqgs9a1iaUGcAiIcPty8rIUaVdfQK5CuwSsrwhHAM2j5V7QFJMbhVArIjm1hbRVL09Psb1G/oLsnYAbESYlDZR3eBvsKqMhmaEI5B26cq5FosgcFOiQ85Q7KbHK4X7w0PiI+PUIAA8BgCEDQhHIO2T1XI1byni/XtqYnKY0ct5t3O3TkA6aUp4umh+31ZCKmrIHgMAgh2MItj0PapCrcf5LjYD3KwrACSHIrNIWktkruz+esJED8fXl8QQGB4DAMIkhCOQdunisWOwmRMgJgJqaiAeAwECK6ZxTFo+1TNCxAAH+0BgVYfEF8BVRUZHBGOQdunisWhDUlPgED4APgyEZKrEHgMCAi8ncUxaPtUzQkQxy4plC9TP12rUHwMCAiYEI5B26dqdoCgVQazA4LCY1BAoM0sjkHbp4oTIB0vyYDxAfLVJCRTIfkYFhAYIRyDtk8VF0DcVUiIewDkow0gWD4GBgRECMeg7VMVASH5ahAiVGg+hgYEQgjHoO1TNRtAoHzAAakQsoHsniN8BVIZZf6uOseg7VM1K0DwKqvVCQEtvSL6CqMyy7yEcAzaPlWsAOlwYxGYDxIgNDw4AOJtZnEM2j5VbABxViH8AKkQQsSDByAxu7rTZgIInA+wr5wQMh5cAHG2szgGbZ+qeQAC7qEjfOkN6hkeHJ8tXOYghP+FRUDCAIJXeUwCoqsPjs8WI7MSwv/C5gRIR8fjYPhA+MoJQalovtqrPDIbIfwvbC6AuKoQnoBoQpAqmq/WKp/MQgj/C4uAtL0HKD7gvjY3SyNZHJ8tUmYmhP+FRUBa3gNMDx3uS7YIC0I4PluszNhV539hEZB29wDJB8yXnhmcFCBGQvhf2KwA6eCQ5y4AKaY+NCEcny1B1iSE/4XNBhBHFdLiHmD5gPgqzQxODJCYXb1uUwcEzQfAV2XmXBHC8dnSZLV2Fv8LGwUgrU81EdYBILBt6Dhf1ZUlqp/O8dkSZVVC+F/YCACRB8edvLt4sXpqO3txdGFtudQvEgAgZkLaAYJWOa2+8mpygFSbWfwvjD8g+ujRW0svsgwI6iRSnR3EA4i9CqHeAwIfHl+GlYmSEI7Pli4rEcL/wtgDkh9eLaA4kJnYDs9nUGwtT2yLF97DqzMLDQiFD6cv476PCQJSIoT/hbEHRKeBFpkIdaaDtOq4Pc8slaW8zdyNGRDbtiiZ3BPrxuMrvAonywnhf2HsAdlKWdCd9CtnVHNK5u3USTx3vEk8MwsMCIkPuy/rvg93BnWSrw5USJnuqnMM2j5VAWuQiklAtsAZpjKz9tLpgOBVFl+ubVFkQhgDognhGLR9qgIAItLkPFkDRLaqjs6rppU/R6GyoIDQ+LD4cu4anCQg5MTRJF9sVSFGsQ7W5Cjvbukt2biqA3KdMGdyd7k3L5QJQAJ9lKo+rD+XhATyxclUJTJJ6xGQ5OhBgYgYvtLIyBGtEiC+NNDKQtYgxArE5Mu/6ZxYh/CuQRJqbnWedQFNFWwm/ez6Mk/VebC2Kr4dtIlF66GbfLl6H9ocGdRRvjpU0WREQjiGOk0VcKnJRT3dsaOmCWmAmCKRCAhe1fQFwSOhViH8AUk2SIRwDHWaKiAguiF1camnPbCjWAEBkR0QtKrhyzb10VSRCBkDIKS+OsdQp6naAyIHrApAjraWx/XKEj3/AZ0HsRIyFCBQPISKQsgoAKEQwjHUaar2gBydT8NfAJKlSN8qJUrHzqSHA0Q2sNreOTge0waEQAjHUKepQq7FEg2qnRIfgp3jmLVYia2bjr0HeyEAQeAhVQRCRgIIvqvOMdRpqpCreU/ny3d1nvRD3GrexFaFIO+BGsFqdecw1YdSTRcQTchKH754qcLtBzku9oMcLCuAJIcX0u9O7Rbu+gBkLwAgODyUCk3IaADBIsIx1GkqTjsKpRkDE3UP8l2E9DuHrD6SEiAoQkYECA4RjqFOU00VELSq5AuPh/Y1aUAwXRGOoU5TcTq0IbO2gBRT6LQ7B576qJjyhSRkZIDAx7M4hjpNxROQenQi7kFpiQnhzm3S8KgAgiBkdIBACeEY6jTV1ADZawMIGY/C19QBARLCMdRpKn6AmAhBAoJWFX5peJR8oQgZISAwQjiGOk01MUAqa3iJgOBUdV+oRtYYAQF11TmGOk3FEBBDNx0FCF6lnUrHbe/35AGBEMIx1GkqroBUCYFeTXWNO+LOlWqP1vcbQcg4AQE0sziGOk0VAUlqjasICETlQYRjqNNUHAFptrGAV1PbJAW9B9W+R/v7DSdkvIB42lkcQ52mYgtIhRDY1dR32cJU9a55GEBghIwYEDchHEOdpmIJSKMKgQOCVjVGrgLc71kA4mxmcQx1moonIHVCQFfT2IUOUBlGdkPcbygh4wbEQQjHUKep5gyIeeIjAgJXWQnhGOo0FVNAaoRArqZ5jIlbZZs4D3K/gYSMHRArIRxDnaaaDCCGc7Acqk0bHgEBARAyekBsXXWOoU5TcQWkSoj/akznxFlVmw4+At1vGCHjB8RCCMdQp6lmCIgTjwgIWmUihGOo01RsAakQ4r0a40GjRpUHj2D3G0TIJACZdnb1aQBiPojXCYj1s0LdbwghEwGk2c7iGOo0FV9AyoR4rsaS7Nmg8uIRGBAPIVMBpEEIx1CnqZgDoiIZAkjz7YYKgEfA+z0nQOrNLI6hTlOxO9WkZNAVtrZMBzUVCI+Q99tPyIQAqRLCMdRpqnAHx528O3995cwN+ptl9WhFPCAynp1XY80EUlZ5euYWFdyMKi8hUwKkQgjHUKepQh49qo9wT7Z0uoOX1toAUhDSDhDvwJVRhbMISIUQjqFOU4U8vFqd4X60tdSAFIlBtDucPx3Vrquxp5LaKH0GFI+w99tHyLQAKXXVOYY6TRUwDfRWVoU8sb7MAdkqahXlDulPBbYPEPNPNpIKHsDTGILe73kBUhDCMdRpqgCAiDxSRSd9Z7k8/bgCJM/BVrjD+vPGtiPV2gaejiT0/XYTMjVA8mYWx1CnqQLWIOrV8bvzltWVMyceSuuTk9uFO7Q/X3zbAaHQkURA2qoAhwIF89WDKgAgaU/89JOVYV4NiO6j5+lvCYB4CLHyQcQj+P12EjJFQCCnAgXz1b0qxCjWwZoc5d0t3lCApN3307vJyxdU9/06YYSU71mYG38ke+hWiV3Xn8l++sBl6NkUIUMXw2M9ApIcPSgQWb2tDsiO+roFTuJpNntFYKxAyJWHtNB/kFxVyCRrkITczJpqDZKImfSz60VLqj66e7AE5km3mS3eDXyQOuZlC36/HYRMFRAiIZMG5J7kYo5BHRCdQZ0MyIYl6iuAbNaMy/2eIyAbJEKYPLCKBQSkwKAJSMsaZKMa/fptxUedDP07XO63nZDpAkKqQ7g8sLK1B0RmQTcCcnReNboKYMiAWDAwW0lF8xVWZZ9PnzAglMEsLg+sbO0BSTG4VQKy02hibdVAaQVIAmSkoaL5CqmyEjJlQAiEsHlgJQu5FqvRSRczJLvJ4XpOTktAhIHQaKhovkKp5gkIvqvO5oGVLORq3tP6jbxJtaMW827n7loDkhgYAalovsKobIRMHBAsInweWGHh9oMcL/aDFH2Ow/Qnq2ktkrsLAYg0+yJel4rmq73KQsjkAcG1sxg9sNw47ygsrHk1lm3oHhXNVwCVZYP69AFBEcLogeU2akDQKpqvEKrZAoJpZnF6YNoYH9pQssbVQPjgdb+NhMwCEDghrB6YsnECAuKD2f02ETIPQMCE8HpgmUVA+lLNGBAoIbweWGajBATGB7f7bSBkLoAAu+rMHpi00QKCV9F8BVTNGBAYIdwemLAxAgLkg9/9bhAyH0BAzSx2DywZJSDABhbD+91oZM0JEAAig5fQYCMFBK+i+QqsmjcgXkKGL2HTxgcImA+O97tGyMwA8fVEGJSwYaMDBNzAYnm/a42suQHiqURYlLBmowQEr6L56kA1d0CclQiPElZtbIAg+GB5v6uEzBAQVyXCpYRlGxkgiAYWz/tdbWTNEhB7JcKmhCUbFyAoPlje7yoh8wTEWokwKmFuEZC+VRGQxEYIpxJqGxUgOD5Y3u+kQshsARlPdvUxAYLkg+X9FlYQMmNATD0RZiWUNiJAILtsmyqar05Vxf7bOQNiIIRbCYWNDRC0iuarWxUUkHNIC1jEXlR1QviVcEyAoPlgeb8z0+HsVvkiHvn7DG9HjRCGJRwPIHg+WN5vZYoQpwrLR6pw/pTj7agSwrGEoznVZIaAoAsxPkCqhHAsYbiD404WB8ddOaMPjju6sLZcntou3FEBIfDB8n5rywiJgFS66hxLGPLo0Tzl85Y+WfHKmezo0V/M3bUBBK+i+epFFQFRViKEYwlDHl6tcj4fbZXypJ/YTg7Ptz+8msIHy/tdmCAkAiIsJ4RjCQOmgVaZCJ9YXy7z091l3SEziCh3ERBtMEBefOdf+XD65Ws/+0O/86e/lA3mvku8/6e/9F79e1/7B79SVgQsYm8qhQjHEgYAZGt5ezlP+nJ5+vFaEs+dlkk8SQ0s1hEhzDdzoQD5wV+RXwQg78reEWh85O3FLz7zQ79TUoQsYm8q2LFAYXzhVAFrEPXq+N2lBDphMkxReugJ74hIXImn1M/Ffy++8+cFFh/5+RyQ5LffXq41klJtMl5A2hDCHhCRJufJyjBvnoJNNa3a5iik8cE7IhJvFaIA+cc/9zvJn/6rX64C8hFRaXztZ8/94L/58V8pqpARA0JOHT0CQJKDNTnKu1u8YQbkOmGElO+Cj+B55DmY7IbYfypu3Yvv/Cf/+sPJi3/tP+SAPHPuvYn89ms/+/b0n2iBvfjjWX3i+LARWEZIb+56BCQ5elAgsnqbHZBWaaCJFQj3P5m+KkQB8t6PvDd55l3PFJ309wo20v+eEd33ZwQg8mUy8hqEXIfwr0ESMZN+dr2RozBQE4vKB/+IcBOiAXnm7clvv/cZVYO8+E5RjUgiZDNLVh668TVyQIiEjASQe5KL9Sy3YQAh9tCTMUSEs5+uAfnaz/3Hf/hhDYhsYU0VkA1SV300gDTypAcZxZJ8jODZ0lQuQjQgyb/95bcnOSDJb6ctq2k2sVIVhRDugMhpQDMgev6jzTxIBCT5yLl3lQB58Z1vTyl5l6g3Gp30LorYswpPCHdAjs6n4S8A2ak3sULMpGcNrHE8W4rKQUgOiIj/AhDNiyDk3Ll/JNj4yBSGeXMVFhHugBRrseqddMHO8XZrsVQHZCzPlqCyE+IK93yiUMAzhYnCsgrZzmIPSL6a97R+I+9zHLZczbs3E0CMke0Md73URNUuAMU4boc0HCH8Acn2gxwv9oMUnfLDC+lPTu0W7giAJGN6tniVHRBXvOtaIwVkAosVGyoMISMApKsdhfkI75ieLVpFIwT/+yO5HZkhCJkvIMUMyKieLVrlIGTap5q4VHBCRgEI1CIgBhUguAP4Gs3tUAYmZLaAlKbQR/ZssSokIfMABNxVnzUg6tuxPVusKgJiUgEJmSsg5SVYo3u2WBWKkLkAAmxmRUBG+WxxqgiIRQVAZKaAVNbwjvLZolQYQuYECKCdNU9A9mYICJSQWQHiJ2S+gBSvBn9K3asiIFaVh5BZAlLbJMXgKXWughMyN0A8hERAeDylrlURELvKScgcAanvsmXxlLpWgQmZHyBOQmYISGMbOo+n1LEK3E+fISCurvr8AGke08DkKXWsghIyR0AchERA+DylblUREOdPbYTMDhDDOT98nlKnKiAhMwXEhsjcADGdg8XpKXWpghEyW0DM7ayZAWLMhs7qKXWogux7mjMgRkLmCEj9TV5PqUNVBMRnTULmBYj5oFFuT6k7FYSQmQGy0tZalZAZIJaDeId/Sr2pOttcPvSFUVXEvFO+D4iAjFQVAanZCumjvJ8wJCCOI048gNhOch/8KfWo8hMSAcGZ8ROGA0SeIncyO0VO5UkvjlYEAGJ6f/Cn1KcqAlKxFdJHeT9hMED0OaTyPPeX1lCAWDOBDP6UelX5CImA4Mz4CUMBkp9kLQ90L84g1e5c/uypcgZ/Sr2qfI2sCAjOjJ8wFCA6J/SWrEK28sQg2p0PEPNPBn9K/aoiICVbkf9/txyw/XrUxz298kDpEyC+DBYaEJFUKu+k5znYCncOf45Ua4M/pZ5VbkJmCcgb5f9f9xjiY/H3EAAADL1JREFU41gComsQaVfOnHhoPe2xbxfu7P5cuQgHf0o9q9yNrPkCkrzpFsTHsQQk7ZafflIDovvoeWYdHyC2nw3+lPpWRUByW5H/K0AeEY0s0dx6IHnhNX/pNSsrb3wh/S+lRnxZeaN6U1D0ppWVv8gRkORgTY7y7srvl8vTu8nLF7Iee3KdMFted5mKMJo2QcjQZeBhKzKsFCBPp22s704heeTrHnvhNen3j6zI/x6QVUv6Vb2Zvn6jYEQBYvxcYDyHnwc5elAgsnpbkrW3hG35k3i6kz0P/mesd5WrkTXjGiRtNWUNpzfd8sJrZMUh/7vrBdE3EV/Va/lLj7CsQRIxk352vdSsEjWJL0+6Jxn64E+pf5WDkDkD8nWPPZKtQEzbVndJFtR/T4s379KvHxG9+RdewxaQe5KLReLOpJQgOgICVUVAlK3I/xUgP/n1ySNqJKsKyJtW7spqkLEAUjCRCEA8NYiHj+Gf0gAqOyEzBiTtajydoiCsAojom4if5K9F64rjKJZMia4BOTqv2lnFhLoZEB8fwz+lIVRWQuYLiJwHEf+VWFBAiAqk9Oabvr7USW9TwsCApEzcKgHZEU2srQyMHBQLIMZdthUb/CkNobLuv50lIFnHI//+rloT6yfFe6Lnrt/kOsybr8USTIhJkd3kcL3oj9gBcX7q4E9pEFUERNgK6aO8nzBYH0Sv5j0tXuyoxbzbuTuDPz8fwz+lYVQWQiIgODN+wnCddLkf5Hi2HyQ5TF+sprVI7q7pD8DH8E9pIJWZkAgIzoyfMPQols1dBASjioAkrTelMzy0AQUIhA8GT2kglZGQmQHS9liTdiUc/NAGCB8cntJAqggITuWEguJraEBAfIztKYVUGQiJgLhUQEIiIBNRRUDQKhAiIwEExscYn1IwVZOQCIhHBWlnjQMQUA89Gfp+D6tq9tMjID4VgJDxAAKRjfIphVJFQAgqLyGjAATKx/D3e1BVnZAICEDlIyQCMh1VBISi8hAyBkDAfHC430OqaoREQEAqNyEjAATaQ0943O8BVbV+egQEphr5TDqCDx73e0BVlZAICFDlIiQCMiVVBISoshPCHhAMH2zu92CqCiEREITKhgh3QFB8MLrfQ6nKhERAMCpLO4s5IP5t6BVjdL8HUpU3qEdAUCozIWMABC7jdL8HUkVA6CoTIbwBQfLB7H4PoyoIiYBgVQZCWAOC5YPb/R5GlRMSAUGrmoREQCanioC0UDUI4QwImg9+93sQlSYkAkJQ1bvq3AHByfjd70FUEZAWqhohQwLiOdUEzwfH+z2IKiMkAkJTVQgZDhB5cNxJdXDc0YW15fLUduEuAtJGFQFppyohMhgg+uhRmVPqypns6NE8E0IKCIEPrve7f5UkJAJCVhXtrKEAyQ+vlmkJt5YntpPD8+XDq/E99ITv/e5dJfvpERC6KidkKEB0GmiZllBl0ZFJQ5S7BYUPvve7d1UEpK1KETIUIFvL24tOuk7iuVNK4knhg/P97lvlTBAd2tkkVRkhQ9cg0rYMGaYiIO1UEZDWKv+ZQCULDYjImfOkAuTovGpalXMURovGwgYCJDlYk6O8uwZArhNGupioaq8aQRF7VQ0FSHL0oEBk9bYKIPlAL7RcVYuq9qoRFJGjqpuZ9LPrIkehoYnF8h7MQzWCInJUdbXU5OLyxG4EhJNqBEXkqOoKENmqao5iRYs2LgsMiJwTzAHR8x/FPEi0aOOywIAcnU9ZEIDsiOUlzZn0aNHGZZ2txRKtqxSX49W1WNGijcs6W817Wrw4rK/mjRZtXNbRfpDjaj/I4YX0xand7EV9cwjYrpxBd/JFKVbRvp5YT1XfuYt1llQG6mCmdgJg/3gcXUzv4TffhtOcX2rDeTsUjxJ9E4UKeROLB4yJkUpYgGOk+EVQjPS4o7CxOQRsW+hRMFWPIfs+O5nqOL6ER+hm5EtrpJA9U6qfEYUjAaKKiLyJjxNuYv6AUTFSCQtwjOS/CIuRHgFpbA4B2tHWEgvIgZzJT30hA0Kq1gmD0ilayMsiDX1nnbqjX8AGbWbp9WFkAnr8A0upSlVHFxGq0gNGxEglLMAxUvwiMEb6O7SBOqQlmj3IYEofrZyASf8e3Y6QbWWj0aWFMVATf2uRgGxRhr4P1NPcIdKFckl7YFvqRmyBb33pASNcVsICHCPFL0JjpD9AmptDgLLl6ceR8XDljApxUhTmarClN/sssg+SrzJA+sEAX7MdJMMH1UiCWf7b4Bqy/IDhMVIJC3CMlH4RGiP9AUKcVt9J+/vkmXgSIOj+tmjWYkVXzpx4KP1rdnIbJ2oxHoisTok1iGl5kdvKDxgeI5WwAMeI6Re5AIK/c4VRASHNUD6+hv0zfZD+acZele6jo3wJJ49/ezFGiDJ0syzvg2B0tMecV1YocSUswDFS+0VfjEwaEEJTPe3DrSLDT95i7FUdpJX9bvLyBVR3O3VyoXRmDMoIfyyOsnGetJwI28org3EA4ouRIQBBtxOIgBzgB3uOfuw71par34XSqPMpcIDs5HGEiPWDLFzTwMXXjAf45QwvrWcDttso0ZoqImYEsQkIRBwCEG+MTLgGOVhbJXVpn8C1sbK+L+GqpKHi9kBXHfiJIUL/Pg91HI1qMgk1ajFYDeKPkekCskObLEiQQasmF6iAoOrTfCID741Qb28RaXxCDj6Mog8CiBH2o1hESUJphihDPdudfJaatOQM5SuPcny4429hm79oWIf4UazGb1EAgcRIn/Mg5M0hhKe7hV8wkrdCegAEP12QqdQDxXco8APeLQFBdq6q8x+wGGkJCCxG+M+kJxRAUGMoheiGyleMYaNoizILVyohMtwp85K0JtaOXo6AcagfMC5GWgICi5H+AGmxOQQNCHbSODNir1Rp0fMgqa/DdfRCp1PblBJSphgPSENm2RKnJ9ZQCOsHjIuRdoAAY6THBDr0zSFYQPRScuwirgO1vpMw+IVuh6im2Tdto1QHa7QSkppJuvWIq63UIlmUv/wBo2KkFSDQGOkzw1RlcwjGsIAcLGEX37BD0i4SYfgIlL5wk3BCJfZL4BaoCCPMgqT2pEz1gnUm5vqRO1aKB4yJkVaAQGOk5xRs0aKNyyIg0aI5LAISLZrDIiDRojksAhItmsMiINGiOSwCEi2awyIg0aI5LAIypD365mOLxStf/1sIydX7X5/+//DiDfpbo9376scqr587dguxiHO3CMhwdvkmnQ/sDXDRpcW1iQIk+9b8S3Ue7n3FA8RSztwiIIPZ5RsX17w1/UP//J2LhbUqaFiJCisgl29s/MDwVjSIRUAGs3sXuh106VjjL77VIIA8fM1doPei+S0CMpQ9d6xo9TwsWbk3a2o9nMX9o29O216vfItg6N7FLe//hsXidT+TXL1DtMiuFU0s9e0lhdnDBS2Xb1Tk/fqxxavuUhg9dyxWIRSLgAxlD5d6HpdvFH/fK4Dcp7on4vt7F9fL71/xQBOQyzdKztJXt9Q/+V4pujkD5OodsQqhWARkICtHtGKjDMilxTU/kH7//kVGzuLax5L3y4ZYo5N+r/wcxUn2yRkKlxaLtybP37FQVcvDmKGAaNoiIANZVmloe7gOiPo+w0j1Vu4tqCgBUv5ffXLGSvYRl29UP7GPeUVzWARkICv9yU+qUOS9iS994HtvWmSAXJv/oAFI9kH3FvWR6pVoAvXHlfs80cAWARnIPDVI8ryeJLml3vaqz4MINsq45b3y7C1dc1SJjAa0CMhA5umDPHdssbjmtd/203f4ARFfyu2nh22AxF46wSIgQ5lzFCvF51rRTroKAESM6pZaWBoQXWNEQFpZBGQo03/h73v9bzXnQXQ0p11sLyDJvdf85TtKzaecm2ofJDaxSBYBGcyysSmx4OTmbCY9C2VReeTRfWnRHP9tAHJp8Y3lWcDnjmXzhJlKflz2dgSEYBGQwezyTdlarPcfU6sVSxMXWRPr6rsXBkBE+CtAMhJSxspzHLqqSLsxb0iu3rfIMYrDvASLgAxnV+/Uq3mzWcFsbvwVfzfjQNqr310f/xW991c/JgHJvpW6cvcinzN/WH7E9XGisI1FQIa037xTDlZ9/50q0tOvr/qZ7E/9ozctFq98a1ZLVMZ/f/2YBiT7NtFLuXK7pFF4VNRRl+JSkzYWAWFhz7+5zZ/3WuWQL1aUFhcrtrIIyPitUTk8XJ5i0dOJsQIhWQRk/Pb+eve7UoXoBSmxAiFZBGTsdu9i0agcyltu1ZrfOMZLswjI2O3daUe88Wbp0IZL2dhXPLSBZhGQaNEcFgGJFs1hEZBo0RwWAYkWzWERkGjRHBYBiRbNYRGQaNEcFgGJFs1hEZBo0Rz2/wFfMmWJ9JeP0gAAAABJRU5ErkJggg==</file>
</questiontext>
<generalfeedback format="html">
<text><![CDATA[<p>
<ol type = "a">
<li> False. The inverse demand curve evaluated at the monopoly quantity gives the monopoly price of $45.00 </li>
<li> True. The short run equilbrium quantity under monopoly is equal to 3 </li>
<li> False. The equilibrium price, $45.00 is greater than the average cost at monopoly quantity, $38.33 </li>
<li> False. The competitive market price is above the average variable cost. </li>
<li> True. The competitive market price is above the average cost of the firm, and so entry would lead to price equal to the minimum long run average cost. </li>
</ol>
</p>]]></text>
</generalfeedback>
<penalty>0</penalty>
<defaultgrade>1</defaultgrade>
<shuffleanswers>false</shuffleanswers>
<single>false</single>
<answernumbering>abc</answernumbering>
<answer fraction="-33.33333" format="html">
<text><![CDATA[<p>
If the firm can operate as a monopolist, the market price will be equal to $50.00
</p>]]></text>
<feedback format="html">
<text><![CDATA[<p>
False. The inverse demand curve evaluated at the monopoly quantity gives the monopoly price of $45.00
</p>]]></text>
</feedback>
</answer>
<answer fraction="50" format="html">
<text><![CDATA[<p>
The short run equilibrium quantity in the market under monopoly is equal to 3
</p>]]></text>
<feedback format="html">
<text><![CDATA[<p>
True. The short run equilbrium quantity under monopoly is equal to 3
</p>]]></text>
</feedback>
</answer>
<answer fraction="-33.33333" format="html">
<text><![CDATA[<p>
In the long run, the monopolist would want to exit the market.
</p>]]></text>
<feedback format="html">
<text><![CDATA[<p>
False. The equilibrium price, $45.00 is greater than the average cost at monopoly quantity, $38.33
</p>]]></text>
</feedback>
</answer>
<answer fraction="-33.33333" format="html">
<text><![CDATA[<p>
If the market were characterized by perfect competition, the firm would want to exit in the short run.
</p>]]></text>
<feedback format="html">
<text><![CDATA[<p>
False. The competitive market price is above the average variable cost.
</p>]]></text>
</feedback>
</answer>
<answer fraction="50" format="html">
<text><![CDATA[<p>
If this market were in perfect competition among firms with identical long run average costs, entry would drive the market price down.
</p>]]></text>
<feedback format="html">
<text><![CDATA[<p>
True. The competitive market price is above the average cost of the firm, and so entry would lead to price equal to the minimum long run average cost.
</p>]]></text>
</feedback>
</answer>
</question>
<question type="category">
<category>
<text>$course$/sample_3/Exercise 2</text>
</category>
</question>
<question type="multichoice">
<name>
<text> Q2 : private_fall_quiz_2_q7 </text>
</name>
<questiontext format="html">
<text><![CDATA[<p>
<p>Looking at the following plot of a firm’s production function, represented by isoquants for production levels and isocost lines for different total costs of production. Which of the following are true?</p>
<p><img src="@@PLUGINFILE@@/plot-1.png" /></p>
</p>]]></text>
<file name="plot-1.png" encoding="base64">iVBORw0KGgoAAAANSUhEUgAAAyAAAAJYCAMAAACtqHJCAAABp1BMVEUAAAAAAAMAADoAAGYAAwQAA/8AOjoAOmYAOpAAZrYDAAADAwADBAMDBP8D//8EAwAE//8ekP8zMzM6AAA6ADo6AGY6OgA6Ojo6OmY6ZmY6ZpA6ZrY6kNtNTU1NTW5NTY5Nbm5Nbo5NbqtNjshmAABmADpmOgBmOjpmOpBmZjpmZmZmZpBmkJBmkLZmkNtmtttmtv9uTU1ubk1ubo5ujqtujshuq+SOTU2Obk2Obm6Oq6uOyOSOyP+QOgCQOjqQZjqQZmaQZpCQZraQkGaQtpCQtraQttuQ2/+ZmZmrbk2rjm6ryOSr5P+2ZgC2Zjq2kDq2kGa2kJC2tma2tpC2tra2ttu225C229u22/+2/9u2///Ijk3Ijm7Iq27I5P/I///bkDrbkGbbtmbbtpDbtrbb27bb29vb2//b///kq27kyI7kyKvk5Mjk////AAD/ADr/AGb/AwD/BAP/BAT/OgD/Ojr/OpD/ZgD/Zmb/Zrb/kDr/kNv/tmb/tpD/tv//yI7/25D/27b/29v/2///5Kv/5Mj//wP//wT//7b//8j//9v//+T///9oVsP1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAgAElEQVR4nO2djZscxXXum5UtELn+WPYaCGhEAF05xuZaGwOyYxScm+uwwgg7sR0TlgjFGFmyw0hwZa21mmhHSMKr2f6jb1d1V09/VFfXqTr10d3nfZ7dmZ2drtNTdX5Tb3VXVycpiUTqVBJ6B0ikmEWAkEgKESAkkkIECImkEAFCIilEgJBIChEgJJJCBAiJpBABQiIpRICQSAoRICSSQliAPDr3cvHs6J3t2ey1S0jlkkhBhQXI7qwA5NG5GdMLHyEVTCKFFA4gR7szAcju7KVL6cMLs5c+RSmZRAoqFED++MOZAOTBNu87Hp079S5GySRSWGEAcm02e/0PBSDXysc3EEomkQILBZAXf5YeFGDszt7kj+JvEmnQwhqkF0AcXSis1YNtGoSQRiDHgDzFtJOmO0Y/m5lMt13/sFJsy3DyE+t+TeQnNCDiQG9iHiIHxFY4peAr1v0iVeXeYhEgHYp1v0hVDQmQ+Ry0tehFvSeiZveNvl/atgFZoeJ6CYwMiOQoVpLA8rqiFiCgkqqAeCWEABlRYGxAxPmP9XmQDBBTQpopNAci0lFMJPIOLslA2IC0z6QzQAwJaWWQGSGRJiIBMgRhA3J0YfZifS5WNgYxJUSSQYCiyg44UouFvl9ksRwIG5D0YXM2LxukGxIiyyD9oggQTyJANLQelD98J+PjtfVpdH4UC3HwAC8qVisT636RKnJ/RWF+mNd48IBASKyJGOt+kSryBYg5Ie1XNYfqg7BYmDtGFsuBvAFiREhHBukREj0g2DtGgDiQP0BMjtF2ZhCoqGitTLQ7RirlERADQrozCFJUtHkY7Y6RSvkEBG6zFBnUXxRZLE8ii2UXoRoCSIgqg3qLqgHikxAQIIg7RoA4kGdAgDZLmUD6JUVrZaLdMZKQb0BghKgTSLukaPMw2h0jCXkHBIRITwKpC1p3wLFaLOQdI4vlQAEAARDSl0DKgggQTyJA7CJIQugS0ptAeqxF62Roxnv0CgOILiH9+aNFSLRpSIBEr0CAaBKikz+diAzAYuHuGVksBwoFiB4hWvnTRQgB4kkEiF2EjhCI3qivqHiNTLx7RsoVDhAdQnTzp6eoeNMw3j0j5QoIiAYh2vkjK6pusTzmIdBioe0ZWSwHCglIPyH66SMZiFSqL1pAUPeMAHGgoIBgDh6Ux3vjdTLx7hmJKywgfacxQOmjKMosDecGgsYgQCJXYEB6CIGlT6MoW4tlchE93wZqsbAIIYvlQKEBUdssYPbUi7IGBLxFsREBMqLA4QHBtEZdRZlkodlikOSxRqYIAFEQAv5+7SiKACEZKgZAugcicANSKcnSYpkDAur5yWLFHTgKQNSEwMKtSxoOIEiEECAOFAcgmN5IVpJJFq5L2c+KvH5f8pZ77ReNLBZ5rHgVCyAdhBh99beLsgFkdfNWyiC523rHUkIN2uqRpDgUDSByQgxPYLROR1gAsneLP+zfar2jCxBYz08WK+rA8QDS6Y0MYnJEcAA5rHQdq5vz+e3sccnKv8t+31nmJ9BLVAiQkQWOCJAub2QStFmUOSCVbmJ18zb/4S8tM0LQLBZ5rGgVEyASQsyTp16UBSA3ylcWN/Jf4iUCZAKKCpC2zbJInlpRKD3I4lbx917htFDGIHgeiyyWA0UGSJMQm+SpFmU/Bjm8fr8EhL06v8Gf2o9BCJCoA8cGiL01qhUlyrI4ilUcvtq/kS4YBovCXx1ijUHoOG/Uig4Qa2tUL2puXE77PIgYpHNGMjoOJedG0O7ESIpD8QFSG6rb5M5OuqbN6kz6nvBQ4jDvonhhj//V2srAYqEAQhbLgSIExNIaldopyhLlQCd1GQU1AATNYxEgDhQjIBWbZZ87eVFeAYGKLFbEihMQG2skL4oAIRkpUkCq1sg0sOiAeVGxWywMQshiOVCsgBQDEQxAOCExA4LVhRAgDhQtIDkhOKmTlRSzxSKPFbHiBcQwrxUlAbcxi2SyEQESr2IGxCiv16p2wKw7IovlSGSx7CKwEPAlCvkQhBNiGrhWfZ1XvXfKMyAIhBAgDuQHEJNFCnmuWRFS1eYmFBHx5sUdk61gIo8VrTwBYrLhvCDELOca2gQTkr/3MNuIT+Kd50/EIxObecKf7pUvESBjU8SA8K3AX/xr1Tpg7mJARfG3rm7eXtxhV6UvCgIW60vT+SxG9r/9W3wOY7kVvOcnixVt4OgBAaZ1RfXq4zkIKYq/c3n9/uIOm9a+XwCwv56emF95W0zqFbPgCZCRBR4AIMaE1JTnIKCoHJD53XwMsleMRPbWIxIBCH8UU9/NLRZ5rCg1BEBAX/xdKlJQv6j8fXvzPzMkDud/YtcQlo9MwmLxzsMOEBqERCvfgEBXKQR/8a8lsVgpoKjibWyH72Y9yR2+foN4zJUPzgtA7pRbGfT8KICQxXIgv4DAVylcf/GDEZEDok3I+jDvXrFv5eXp+ePhnF1geKPdgxAgIwrsFxD4KoWVL347m7VOQc2S1oCsbua9QwMQceUtwhiEBiHRyisgBqsUgvO6S5UM1CuJvyeDgAFyN+8lrt8Xj8X/5EexDPeOAIlRXgExWKUQnNdrdVgs3ZL4W7KhxeLO/o1sV+/ycyDiMf/f7bxP3LM+D4LjschiOZBfQOCrFILzeq02INWSeotan0m/ka7PqBeP3HWJ18RCcmIrAmREgUP1ILqrFNYSx2YgsgktyedcLPJY0SrIGASwSmE9b2wJqfzZW5LH60FSAiRa+T2KBV+lsJk3AEIaHTC0JDMUTS0Whscii+VAoc6D6K5S2MobfUJ6AOntjgiQyOOOEBD4KoXtvDF1WdKS1IQYXeRlKLJYcWoQc7EaL5uloSwDsa42QRANQuLUAAHRTes+iwUoCiaznt8eELJYDjREQDTTWgcQ6xP0GoE1RYBEGXiQgBildVcCxuKyyGJFqSEAgkNIp8mPhBACJEoNFRCNtJZYLHkGYhNibrHsCCGL5UCxA9L9xdqb1s3q605AZEIM240AiTHwcAEBp7UiAaNwWeSxYtSAAYGmtSoBYyCEAIlRfgExmBlrntb6Fqu3KJgsLJYVIWSxHMgnIOX1E8U8XvZ3ScxexyqF5mkNAgSTENN2I0AiDOwRkHKVQvY0A4TNXBSXe/P1pmSrFPantXZe9+Rf+Gkn5LEilEdAylUKMwz+lD1UZ7x3rlKImNZ9+RecEAIkQvkERKxSmC5vMCDETHf2yqJuvSorhPRmTWdeyyxWb1HK/2vKxmLZEEIWy4F8jkGKVQrZygfLsgfJYdi/veDXfrdXKexPmi5C4IAgEUKAjCiw16NY+SqFbAFoBki+8FoOA78aZHGrvUqhlu/QzGuNosLaLPJY8cn3Yd696/fZQibiKNb1/84t1l6+Yshdkx4k1SVEk7VwhBAg8ck3IKubd/bza+9yCIoxCL+rgLg0HQ6IlJBWB6xdlCUixj2/pccii+VAHgERqxSy53wREwZDsYyDWLEQfBRLSJLWhoDYE0KAjCiwR0DEKoVMS34e5DY7ssX/5udD9iWrFGrbDo201k6/YDaLPFZ08n0mvbqQ4mFutDgc1fv9VVcpBORMb1ojFuVIBEh0GvRcrOb762ltarEkRcFk3vOTxYouMD4gD380m81eu7SO4Gw2b3uDWlrbAGJFiB0g5oQQIA6EDsiD7RnTqXfLCFa3gYZ9qarTGpR+YVwWeazYhA3I0YXZS5fSh9nvT0WExHAZz3wb2JdqPyFIRTkSARKbsAF5sP3CR9nDo3NlF8IAMVqk0ASQalq3O2DjomCy6PnJYsUWGBuQg9nL7CHrSN4UESxDAHNmnda2gBgTYgmIMSEEiAN56kEsBE0ZRVojFuVK5LEik7MxyMtlBM+AKE4ZIhblSgRIZEI/inX0IT+K9Xo+Rn+KKesJd8x/eMqAtmFpLf1fnn2QsnhRdvsP+2G76DPeoH92rLYPBMiDH3JAXixPhHjvQdLim79dB4ZFQTfRrnyJbAYhNnFtFCruQMcgrPPIupFgYxAuuTcyyj7PLos8VlzCBmR39kbxKAYhQQCR57XZ17NfQgiQuIQMyNGFoud4sC3OFAYCpJMQo5JAiFj1/GSx4go8XkBkhJj3RhBCrAExJIQAcaDRWqxUlteYsLkSeayohH8mPYpBeq4WIVawGe4EVARIVEI/zHttluuNMkIoQFgH3MhrO9gggc1FFiuqwPjXg/wXux7kB/XrQWxkBUgjr22+nfUJsQfE4gMHEAFiFyGcxWKq5bVVWb7mnZDHikmjB6RGiN0Ve54IIUBi0ogBER1wkxCLfdEjxLLnJ4sVU+AJAFJNa8zuqD+wmYy7OQLEgYYBiKXlWKe1dVk+XBZ5rIgUPyAY+VKmNSZszkSARKQRA1LtgMX4Ggc24P2noSKLFVHgiQAi0hrjy7mXEAxATPaSAHGgEQPSEM9rnLJc2yzyWPFoOoBwQhBG/EVR9oV0iwCJRyMGpN0BF4RY7k9REiQwUIYYk8VyoEkBUhBiuT+iJEhgmAiQeAKPGBCZOCFYJaGUIxV5rGg0MUA4IWgl4RQkEQESjUYMiLQD3sTLa1FSkjQ+on3Pb+axyGI50OQAQSckSZqEECAjCjxiQLoKQyVkniRtQuxFHisWTRAQVEKSxAkhBEgsGjEgHRYLlZC0Bchfnsyef922WCOPRRbLgaYGSF4a3rWBTUD+8uRj6c43HvumZbEESCyBRwyIqjQ0QpqAfMZ6jy+Tr9qWSx4rEg0EENxBCHvEJqT48xv5X1+xLZYAiUQjBkRhsZhwCRF/MXeF0fObfGiyWA40AEBMv017AEGzWYyPsqjPkq/htBsBEkfgEQPSWxjiMj5lUdkg/ZucEluRx4pDkwSkLA0XEf7ID/Pa84E88iKZasSAdFusdWkOCEHq+Q0AIYvlQJMDpFmaA0Jw2o0AiSLwiAHRLM1FH4IhslhRiACJlRAahEShEQOiZ7FSfEKQen7wxyaL5UDg7P34rWee/eDwH9/XjxA9INiEECAjCgzM3uWZJEmOfXB4OjmpHSF2i5VG6rLIYsUgWPZmYDz3y9PHPlj9PEnO6kaIEBC3hCAVRYOQGATL3ovJiQySYx+k6eXsmWaECC1Wu7hYCYG8nyyWA4Gyd3V+4+0CkOUW+60VITJAOopD9EZYiBAgEQQGZS9nIwck/60VITKL1VWci5lZdiKPFYGAgAypB4EWh3kLQjxCEIohWQg6BjmZA7K66HkMgrgSZ3dpSIRIbtBuJuDnJovlQLDsXW4lz39y+ti/f3ImyfoSzQj25yJ9AYJEiOQG7WYCfjMQIA4EPQ+yVVxhuqF7lDccIKrSFIREdEaEBiHhBc3e1S+eyfA4/urv9SMMCZAICcHYFZKxhjAXC9li9RRnj4jsBu1mIosVPDAB0pI1IbIbtJsJ5rEIEAcCZu+9nzwj9Ky3w7y+jvOWQrNZKITg7ArJTLDsXWytF0rzdx7EOyDxEEKAhBZwqkny+E+vFNIdpg/OYjFZJbbsBu2GAnksslgOBD+TDo4wRECsCJHdoN1UBEjgwPC5WOAIUVosp4QglkQeK7CAU02G1INYlhcHIQRIYEEvmHpC/1pbESE6i6VZnnFetwJb2CzIIIQslgNBD/OeSY7/9Stc372qGWGogBgT0g5sSYhxXD8iQEotR3GYV7u8GC6iIo8VVtDDvBvf+1WhX8fegyCUF8FFVDRhMawGc5gX867I+sUZpXVHYAtCrOI6F1ksoVCHec26EDUguuUZpHVXYDNCCJCggQdxmDecx0qxByLwjchjBRX4MK/myKMSYeCAREEI1g6QoIIN0n/ynSR59hXvh3mxLRawPOhARBHYhBDtnSWL5UDAMUgS5DBvYECghKjazYAQbY9FgDgQsAd5Za3oexDM8kLOO6FBSEgN4orC8IAEJwQpOAmqEQPSY7HcEdLT84MJ0d1bslgOpJ29q5989+qwLJaq+gwK1M/rvnaDDvoJkICBtbOXnSQc1iAdu0C8eScmhOBEJkGl34P87tdXV7/71Voe52LFAUi4NbMIkHCa5hjENOX08lqn5wcRoumxyGI5kOlcLJ+3P4gHEL281mo3UHdEgAQLbAqIz9sfODgVYFxemPnv5LGCSX8Mcj6pS3dWVrSAhCYEgAidKwwm/exd1PnQXt4dAxCjr1BlB2yecf1prd3zwwjpfRNZLAcCZO8XVz45few3xbJxgAgjA6Q/rQHtpksIARIqMHAulu7ZwWqEUIC4K9D/BHjyWKE0jMO8kQESiBCskCSARgyIK4vFpExrWM+vR4jO/pLFcqApA2JJSGdeA9tNixCd/SVAHGjEgLgt0fe8E/JYYUSAGMsvITRMD6MRA6LugBHyrSuv4T2/BiEagJDFcqBhzMWKE5CuvDZoN01C1O8gQBxoGHOxorRYqd+ZWWSxgmgYc7FiBcTnRVQ0CAmiAc3FgmZHv8VyRIhhz69DiPINZLEcaEBzsXABQeuU2nlt2m49hBAgIQIPZC5WtB4r9Xe4lzxWCA3kMG/MgHgbqhMgAYS/7M/Rh9uz2d/8eB0hFCCeLFbaIsSi51cS0teFkMVyIPRlfx6em3G9XkYYPyCNvLZqNwUhBEiAwNjL/hxdmL14KT36j9mpd0WEiC2WI0Jsi+r6F3ks/8IegxzMXviIPV6bvSwiRAoIcpE+CKFhun8hA5J1IG82I0RqsbCZW+e1bc/fSUgPIGSxHAicvVeEfi/776NzeQdSjTARQNZ5bd1unYaNAPEeGJi9/7mlHqQ/2H7p0z/83Wz24s/WEaZhsVIf807IY3kXLHsvZ2AcfybXsx2AvJMfxXqD//0UUwb6ju0PywyMcio/m+hl5nmNUlZWUtc+Y9bBlH8cALI6n5y4qnzHATvA+2l69GEER7H66sDF13FOCFpJLSl3GSWugULFjc9iHZ7uuw30geg6dh0cxQJmc2/1ufArLK9x2k1KiLIaCBAHMr0epEMPtouegw1GigihANEqE7lI54d7aRDiWbDsvdjXgzzYLo5ilU+QABnEKJ3L7cwsAsSzYNm73HrifeUbji4UPcjBDLcHMciMIBYrdXwwS9WTksVyIOB09zNJclw5WVGMPXaLscgEAXE774QA8RsYOAbpnaz4YHv22iUHR7FcWSw3fsUhIXQqxK9gPYjGPQoPtvlpkFPljJN4AXFo6N0RQoD4Ff4FUw/fyRD5waV1hGgtlitAWGB3Q/XunSaL5UBDuaJwaIC4I6S7CyFAHAiWvV9cuaKerCiLMEWLlTq8RQJ5LJ/CHqRLIsQNyPAIoVGIT8EA+XYxUZHNWZROVpRFiNtiOUg1EdgRIZ17TRbLgQyz9+Ot59WzFisR4gXEkVspAzskRBnXswgQiRbJSd0IeIAMaxCSYp8yFEWRx/Io0+w9PO11bd50gKN0JieEECAeZQ6I50E6PJnDWywmF/NOOnabLJYDmWbvZb+ru6fuAMEnpB7YASEdu02AOBBwsmIxUfE7W4nvMYibb3svZsUNIUhFktQyPg/i+yjWgAHBJ4RGId5kOllRF4+4LZYbQNqB0Yfq0v0mi+VAPuZi4STHkAFBv4iKAPEV2AsgKLkxYIuVog/VyWP5kh9AMHLDGSCeEg2fEKTiSCp5me6OkhtOLJaTROsIjEqIjGyyWA7k53oQjNwYPCDIQ3UCZESAYOSGGzfk1apgE4JUGEkhX1cUIhFivzs+Cu0U7vReIsSDYIC895zudYSVCHkI+8M40FzWtljYeaYIjEyIdlynIoslpD9DsRqhCGFNiBNAXHQhqsB4hGy2CCFAHMgfINaIuHFDvo+XohGyuYnYHZG6BL0/SM/tD2QR1iHsCBkHIHinDDkhhIhjAedivZUkz/TcJ70VoRrCpkVHYbFSPEI2m4SQxXIg36uaWCSHO0CQCekNjITI5mbdZhEgDoS+9Gg7Qj2EeW44MkMhJm3gELLZJISEL/8rKxonx4gAQRqr810nQpwqwNKjpoS4sVgOANEKjDf7Bu/204Yii1XVx2898+wHh/+ovo9OLUI7hFlyQEcLcQOCOPtGlESAOBAQkOUZPjzPRuu6l6RLryg0Sg5HU9ODXVqBMBApdp1cljvBAMnAeO6Xp499sPp5kpzVjSALYUwIfCudUsNMasKZfUOEOBXwJp7JieJ0+uXsmWYEaQiTJnVjsfC50+/50eanzdHuz24gslhCq/MbbxeALLcsF44zyI3xAWJNyGaFkDkB4kDwuVg5IPYrK8JzY1THeQuhzeCkaSduBAQErwcxyA2HgAyWkMrOEyIuBB2DnMwBWV20HIMwQRvUkcVCBw/W89tPcRY7H4oQslilllvJ85+cPvbvn5xJsr5EM0J3CGCLjhMQPEJ2Ah3NIkDWygjJtaF7lFe5siKMEFdWKKjFSi0JqRtEclnYgp5JX/2C33/tVf1Lb9VLj0IQcTVYCA2IPSFIRZHaCn4baAAhQEBAFguTEHjPbzN6WO+9uP20b0TIYtlF6AsBI0Q/sH71BQfEmpBKXP+EECAVrT5md7p97p8BEXpDaLfoWAchTOZ53eoAyWYhCgjIQgzSH9c9iKVz+wPdFh0zIJaENItC2CESE/gw7+M/vXLlyi+e1r7iVuv+IJotOl6LxWVzJdlmLa5fQshilbooVjVBOVFYkV6LugQEkRDjdrO81rIS1yshBIgQn2qSC2GqSU1aLerMCkXhsVLjvJYATi4LSaYLx6HfBlqnRUcPCOK1lkQIjqAWS5xAX25h3wZao0VdWSxkQGx6fhtCWrefttgPiMhilbonPNa9Mxhzserqb1GngOARYtVuFlcjN+J6I4QAEVr95DtJ8uyrv/qX7OFx3eUV9e9y23ug09nE9LAz3uvCu16f5r8jyHxlRd3lFQG3gdYiRLs0iCICxPhq5PYHIELsBexBXmkItQdJe5MDlMeQDjgei5ViEuIHEbJYdhFAIdQN6hQQNEKs280grbs+gA9CCBC7CLAQyhZ1arGi8ViohNDxXjtFB4gyOdylcVyAGF6wL/8ERIiN4gNEhYgzi4UKCErPPyBCyGLZRYCH6CRkQoCAbZbCJToeiBAgdhFMQnS0qFuLFZXHGhIhY1akgHQQ4jCN4wPEZE2Lzo9AhBjKEyBzE0kKg6QxrANGBASv5x8GIWSxmFonCSE38TRqHNlGEwMEltfq/tUdIQQIU2uaCWS6u1HTyFp0UoMQLighOCWRhPR7kOoNPKE38TRrGUmLTg8QSF73fAYixEB+xiDGgDQ3dGexENlD7vm183qn7zM4IoQsll0Ec0DaLTpFQLTzeqe3G3RDCAFS1ZVcv/vl37oeg7Ctmi3q0AdF67GgS+sF6ENGLCAg79kO0vezJrp+X/K2e+0X2VYNmzVNQGBL6yk/BJ0yBAoGyOU1H4/rLq5YBWR181bKILnbetdSQg3fqt6ikCyGdsBogDjo+bXSmsUNQQhZLKHV+eQkv0/h6j3tZbFqgOzd4g/7t1rv6gSknhxTBUSLEC1AHCBCgAjxdbEu81ukXwbdBrpokMNK17G6OZ/fzh6XrL3ust93lvkJ9BIV0YxNQiC7DFDMHks/rUMQMmbB18Va8M4DtuxP0R6VbmJ18zb/4S8tM0K6e5Bai04WEN201voURIi24IDkaMAWjhOA3ChfXdzIf4mXlIBUksOhxUKDz1XP35fWeVz/hJDFKsUWjsvXH4UtPdruQRa3ir/3CqelBGSNyJQB6UvrIq7Wx8AkhAAptUg2vp+N1E9cXV1MDCyWGIMcXr9fAsJend/gT7vGIPkfeZO6tEGRe6xU02bpfQxyWXoCnge5mBz7oLiRp8EgXRy+2r+RLhgGi8JfHfaMQYo/WZNOGxAixLugZ9I//ttsFHImSY5r32NKfh5EDNI5Ixkdh5JzI80GZE0KSGJ4B4wEiNOeX4GIiKtZR2iEkMWyi1A7k74nPJQ4zLsoXtjjf9XUar/srZMHREFIGdczIQSIkPHtD4znYjVfyQkxKk1D8Vssrt7E1v0WIZfVL1NAjI5iASXZKifEqDQNDWAQwkWE+JP+BVPnG1cUGhzFAkq2FSdEb3ODDhgHEPc9vzyx13G1SUc5qU4Wi2tR52PD5CgWTNKtGCF6m48YEDkhlbheCSFAcn1x5ZPTx35TXA8CiIALyKZLWzAUj9VrjgAfhGyWUsDbH+guZVKNgAyIS0KGAwgR4klxX3Ir0SYnRKdAkw4YBRA/lqNdCbW4MEKsECGLxcR6j9raWKB1sYz2rXP1Ub0WHTkgbUJMAbElhABhYod4a2tjBTnMmxY57MoWDMhj9Xkj0EehS0S6BFgX69dXa2tjqdbFerD90qdlhAogizuQfVMA4pQQJwW7kDKtYawTIR1yMgY5ujCTAXKYNcKt4vFGPsmEXU1Y/o/Ts5e/h0kFiAYhRh0wBiD+LEc9rRtxgb2hOSFksaC6NpMBsrp5e3Fn71bGwu3y6nTxyGYxrm7e4fN92RxGLiUg/d95xoDYEuIzYaqV0IzrixACpKLVx99+5plnnlPO5X2wLQVkef3+4g77xa+yzae3L4pZ7mL2O5/UK2bBqwFx4woGNQhhUlQC9LOQy5IICMhiS6z683bnezKD9feyMchyfnc9BlkWU3qLzkLMeucvi6nvPYC4adGhAUKEuBUMkOVW8vhPr1y58ounFQexdmcvywfpe/M/l4Dk1kp0IEUPkhHEQOkHRIsQsw54YBYrrVRCKy64OzQjhCxWqYvJifzY1epi58JYB5m96jiKtV+OyfdzMvbENSBsXLK6WQKSc9QPiLJFzQGxJMR3wohKaMf1QwgBIpSv18DVOd390blT764P8z7FtFM5zLvHySjWVqxcRng4n1//72x80uhBdnbaP6zRy7+zFpW9x+KH5xRymY5/WCVo1JXOD359RvvjBJD+C6Z2Z2+ozoPwQ1V7Ymh+o7ap3hikYYLQh+qDG4Sk+Rc/Gxm2/gHvD2kcUhd82Z9cXQvHXTGVn7sAAB5BSURBVOPHr6SAZDgwQO6yNRtyrZcg5WDs39I5itXM4E5CtL8klMUbyDCwgT5Lvp4/mc/zYyetd/ggxN/nDRAYBsg94bHundmQHsZ6sJ0ZrA5AsqHF4s7+jcoSWOUQJF9kkcGx13sepJ3BHU1qAYgdIQEAScUEoOY7DD4NuE8mQIRWP/lOkjz76q/+JXt4XDpj8dqs1AsfFRFqZ9Jv5EN1PlrndivNHw7F+L1YSI5JFxBkWzAgj1UCsp4i13yLD0LGLOAYpHHZbetgrxIQnLlYsgRGbdGBAPJlVv1/1Q+IUY9IhJQC9iCv6N0LumuQDpMCEB1CTDtga4/lxXJ8mXyFMeIGEBghZLHA8g6IzBYYV98gAOHu6hsagBgTot1oBAhYLUBMCFHOoGi/G88WDMJjfeOxb6bp561BuqwSnBMyZrm5iWcTkHRuoq7SO9obrUUHMWGxAUhBiLQSDD8PIcLk5yaeuOpq70aDWlksG0D8Waz1Yd5UnCiUpbVjQshilbq85gN0E09cdTZ3vUHNq28IgHyZPFYZpFfiIhKi2SkTIELGN/HEVXdrI7mCQXis2mHemtqVYPyByGX5uYknrhTNjUPIIABRiAjBk5+beOJK2drrFrXogO0ACWU51nH9EkIWS8j4Jp7IUjZ29/VDsADmhIQHpJ3W5p+onxACpJTpTTyRpW5sBFcwdI/lmZAxy89NPJHV09ZIhNiWEVZECI783MQTWX1NnQ/VbTrgoVustJ3WFr1iDyFksSoyu4knsnqbmhNiC4gxIXEA4o8QAsQughtAepra1hYM32O1j3nbETJRmzVWQGwJGQMgzbS26RYnS4hR9n78G0gEBwzqtLRdi9okUyQWi6me11bGsbs+yWIVuvcP+aHd1XnVwoqtCIEAQSDEcNOIAPFCCAGSix294oeuVu9t6d/DMxwgdrZgFB6LqVoJm476kBFLP3sPTydPvF88X13Unu0eEBArQoZ/rlCoRYhNSZNDRD97L1dPDbJ5vboRHAHS286sA7YkxGzLmCwWk2tCyGIxZUhUXdUi5Jl0fUAsCBkPILW8tuwZZfVJgDA1ZicGnawIyV5jQsbjsWqE2A1DpjcQGT0g5sZ5RIBU85oIAQlgsWqLjQadzauXvKIDNiXEOJGis1hMDUIswrSqkywW18WIxiAgQEy/9MYFCC4hOKtj2CouQBYRHcXyc3/KUXksl4SMWfrZy68DEc8Dnwfxc/e9MQ3TmcpKsB2GTGkgAjuTvvHqb66mq0/+KXumPdfECSA63+61DtikRU3TKE6LlTYJsYpVrU+yWIXunVmvivV+/9tFhCgAMbIFYwPEESEESKlP3no6o+P4d/XxCAhIQwaEjM1jOetDRqxBXg+Smn25g5t0fICUXxP2w5CJDNWHDEhP+7Y7YCNCYFvIA/uRVtwaIXbxRFFksewixAMImBCzLIoakDKvMbrHvCQCxC6CmxBmzWtCCDxK5EInZMyaGCDQFh3hKISJ1wLCMGQChIwYEHkHDGtRoxyK3GIxoRISDBGyWAqZAmJACODtqsDOBYk7CkIIEIXM2xbUoCP1WJiEjNtmmWbv6ne/+rXedF5HgFiMn0HfeWMFhAjRk2n2Hp5Ontab0Jskbmqvt2W7O2AIIQYZNASLlVYJsY4biJCYLRa7onDxvE4fIr81sb0sAIEgMl5A0AjZCdWHxAwIIELipvbsGhZGiHmcqIXWh4x43ok5IF/oX1HopPJsG1Z3p0Y7TE/zOsAZhoyWEP1FG/5P/e/ffgtwTbqLyutt174OGEKI7k5pBXYlg7gsra0J2SnLsijEIrBTAVY1eb7y1+o97UsKxe3tYfulIVtAdHcKnD8DAgSFkMrqGOaF2AR2KQAgyZoQdukUbNEGB5WHNx21P85YPVbKKwHrE47RZQEWbdgqD+v+divRXrNBnAfB96jezgKPGxAiRCnAIF0Qktkrk9sfoBNibbGYdHYKmj5DslhMwmYhxPU7VI/KYqWCEGavtE6AiAhlCOTa68tbverTJURzp/QD48s4riUh1bheCYkNELauycnMXm18HxRhHcIBIfalaOzTyEchaYkIUlEYxcQi2HkQfgdowIomPEI1BGrt+TPOoweECOkS8ERhRsgJgL3iEWohMGsPxWKlOvsE60IGZ7G4zAlpxvVGSHQWK81dFjBCPQRi7fWkrX719e7TFAAxJ6QV19dAJEZA4IQ0p7vj1R7e0ACZkIEK1WWNxWZBThTWZXz7A1xCcErq26VJAIJIyHgGIgEAwas9LIuV9lMLIWSgFis1JUQa1wchcVmsL67U9XvdCJIQSLWHCEgfIdMAxIwQjNUxjBQXIMYRZCFwag/X+KgRmYbJIpfVVKhFG/AIQSimkJKQiQAiZmYhFTV8RIKtaoJSecqmNLs8wiyWbWAU4cSFE6J1+2kXGrHFSnEIwQZEtVP6XciwASlOquPEdUvIuAHBqDx829NDCG6wSAUmRF0WTkGhFHLhOPvKczAw6LYFUxmFpIXNQisKp6BACrqyor1HVeWsYQfcuVPagAzcYmXaBBGie/tpdI3cYqUIhDgApLtJdQkZPiCcEG1EeuK6I2T8gFgj4sb1qAjBjxalQIT0aNAuKzQgloQ4Ghd07NOERiHZZ+WIoJQ1ZEKCA2JZfYqUtemAFYT0bzwCi8WUE8Km3VnHdUTIFCwWk031OQKkY5/0upCRAJJ3Ikk/IRpx3ZwynAogNoQ4Mz3dhDgJF6V0CdHQYKedRAGIBSHuhgXSfZrSKCQtFh6vEvKXJ5PkMbOyBopIHIBYEiL/j20HbEzIWCwWaztBSP73X558LP0y+apZXHxCJmOxUgtC3AEibdHJAVIQkv/9efI1m7jYhEwJEOPKc+l5TAkZjZKSkPzvz5KvW5U3QJcVDSCmlec2YduITAqQkpDiI9sCMkBC4gHEhhDpP1A6YBNCxmOxqoSwz2xpsVLkgcikLFZqWnluAZFwOylAOCGbghA2SGc/FnExCZkaIGaV59zyNHdqWiaLq5yZZXGYt9SwbFZUgBhVnvt8lRHiNGCEmuxFVJEBYkqI7HW8DrixU31IjspiCSkuEQHHxSJkchaLCW6z3AMCJGSUgKTlQAQhLhIhkwQEToiPMUF9nyY4CklVhMA1HJcVHyBgRLykKxEy0YuoYgTEhBDJy7gdcJuQzreO02IxzaWdiFFcDEKmabG4QNXnBZD6Lim7kPECIrdZZnERCBkTIHO4tCN4Mjy1fZqmyUIdiAxj/rsnQAxqAkgIPABY1RadKiCYi/cOghA/gBjVg37tyRvMQQesR8iILRZTixDzuJaIjMdimdWCduXJk9VF9WkRMnJAxFC9/PAWce0IIUA0t/Pod9YtOl2T1SLEsiyMYpwJH5A//mg2O/XapXUEG0AAhBiFgIsIYSoI8XSb+pBCB+TDGdepd8sI5oBoV560sVx1wCUiXSkydovFVCXE/vbThlsO0WIdzE79OE0fXpi98JGIUANkP6uO6/clG95rvzjXrjyvgJSEbHYQMgVASkI2UVbHMENkgIAcXZi9yR4fncsf0zogq5u3UgbJ3daGSwk1bCvNyvPsdqqEeAwblSqEIBQVrc1CBuTRuaLn2J29ISJUANm7xR/2b7U27AJEs/J8ZyoRsh6qj3sg4uoolhSQw0rXsbo5n9/OHpesnu+y33eW+Rn0EpViK53KkzWU0w443yl/x5d15DvuHLcTgW80QIsl9OhcOUqvAFLpJlY3b/Mf/tIyI6SrB0n1CWm85Lb6FIRMBRBsmwXeZsCAXJu9zB+fYtopAblRvmFxI/8lXuoAZGeH/eQ2K3/e8cNaSfV//J98n8Q41W/saH5KQuzroL+NkX/05AaQA/lh3goFi1vF33uF01L0IDoDkQCjAb5PWF+gQ9WaEOtKiHMc4gSQg+1Tb5Z/SMYgh9fvl4CwV+c3+NOOMUj+vK/62k2k/SVhqjUhngN3KEjcebUTsS4KtoGPD+wCkGuV/qN+FKs4fLV/I10wDBaFvzpUj0HyP3qqr91E7quvg5BJAVIlxBYRKCEDBeTDGh8d50HEIJ0zktFxKDk30qgtdfUFsTpdfci0xGoBB5EIXRY6IEe7sxc/qr5QP5O+JzyUOMy7KF7Y43/V1KysfkIs9ttMmEc6hytUQiJDBB2Q3dlLn9YjWMzFar6gqr1W83hxHDJCpmWxWNzK8QpLRECEDNFiXWvygQmIkpAwgMgmtk4PkOpZIY+IDBCQR+dmQi+LCIiA9BJiFMdSiDMuhqt5rROxqou4bBYyIAczt4CoCAmWpZjXDw1W83onYosI0l7ZK+orCqUvqgmp/OnPcTQImaDFYqpdBOCFkAFaLFkEXEAUlRdwKFAg4j9wVaHj1i4ks0NEjxACRP5yV+WFHAnUCJmq6lcjW1VHNC5rgIB0j+KCDgTmeDfQGKxGSMgQAekkpN4mvh1HSUhoqxMw7hwPEQ1CxmexFncgWyoqSF57YQEpCYkgUYPFrXx32SLST8jYADnMPnI+W/GQzzbhs3fF1bd7xdO99Uuq+tEhxLcUN2GakNqEmFZJFC7LIyCrm7cXd/Kr0vc4IIvKpel7d/Ir1vdv8TmMXMrqkdZe4BN2RAhTpWU27RiJgRCPgCyv31/cYdPaD4v5ivvr6Yn5lbfFpF4xC15dO9KBSLUtAjiOnJAYrE7IuNWGsUOk56T6yCzWcn43H4MsbudXf+ytRySiM+H/EFPfe74+ZLVXbYoQ+RK0D4kFEMmNIkwRURMyMkCy4cWfCyQKDv7EriXk2r+94M9556EJiLQLDj3lg1wWUz2vbRFB2y0TeT2KxZZV5LlfrGVyp1zHgV8NknUjBSA5R/010669wKMQIqRQo2UsEAlMiO/DvPnwfH2BbdFb8LF79hzWg3QRkj8L5DjyW12GiByNxWJqtox5N9Jts8ZmsRggq5usd2gBwsfr4tJ0ACBtQtZtECpfghESFSAdLWOCSCchIwMk6x0YICz5l+WSDfkZkfI54ChWoVbthfZYbA9C9SFRqcP/oiLiXh4ByYYWizv7PPk5IJyV4vAV71jYmid7uudBSjUrL/gohAgpJEnrTUNGwhHi+0x63jmUC2Kxs+YcDraGgziTLk6P6FaJhBD2GMpxZIFzQpLE6BbYFnHDqDNu56kqM0T0AyNqoHOxGm+sVZ6o/ICA5IQkdUI+T77mPG4QKeJ2z3cAMyIpanyAwKS/VZsQo4CIkhDiHJAYpZgzB0UkjMsaByD1yotgFMI+dpOQSQLSmdYGiAQhxBMgJp8MtE1rdkNYi8U+tiBEvPx58ldJ8tg3HccNIHVc9QWgIESaRY3HYvH8BQsUprpBXuvBASkIES9/ntHxlycfcxw3gHriKloSykijqBEB4kMNQjxF7VJSEDKvAPLVafosLUL0Gsy/yxoRIM1LdXyF7VBJiNiRz5Ovp+mXjJKpSZnWMES8EzImQGIhpOj5kwYizgGJ1GKlfWkN6kaqRZHFgqociMQACCdkcz0zi7srlxYrXkD07u6ix0ilKAIErDgIqWqznHfifJAes/oPumgz4nfaycgAqS/v5zVwpzaLS0Tyw7yh9yaYYIgo265RUqKW3W6PDpDaErF+Iws1e/5NTxdRRWyxmHS++TUZKUpigfsJsEvA8QESnpBWwmz6uUQkckA0D0FpMZLDxgHpL5EAaWi+Xojfd+gu5YREszuhpDl62OyHpOyOdLLLJgPHCEj1bi7eY3fIl82KXNrj635GCkQIEBPxytsJRYjUchSEuNyf6C1WCjoE1cdIXhQBYqas8nY0Tz2hqyNhnBMyBEBgB2k31ZCwoggQQ83FrYmDRJeqICSiPQoi4GkMFSPFVLfV+WMfZA/LrRPrf63OJ8kTV/PnBIhMERJC9/vkAp/o62akKGq5dTL7fVEAkTI+sj/ECwSIVIIQ74HVl6C6I2QQFovJ4FS4lJHy/tPp5awLWW6dXb9/+T/fLn6lBEiHduaBLI0qYVwSMhhADOfktiDZKYs6PH0ivXiCdSX85PnG2wSIjkIRopIgJKqd8i7T6VTtjiTJi1ps/N+ChlxksfQUJyGEiPl1HS1A8qKyMfnJ+hsv0iC9R7znD0FI/yWo886D+w7jOpNRXJspuaL2iqkmvKgFP5BVinmu4uAWAdKhvN0CENKbMI4QGRQgttcGVgDhRS2KI73FGIT/SWMQHc2dn8GGq0JIXDvmUzjXdSSiqHoPQoDoK8p5ghVCYts1b0IhJCmLalksGqSrte75PROiZTnK85h4iAzLYjFZIlKd7t4s6fA0DdJ7VL+/vUdC9BJmPeMYC5HhAWJJSO16EEVJBEifopxrPsdHZICytVnr7OouiQDpVUGI7xsSqDWvXNk1XUYsCam0Z2d3RIBIVev5+SV9GBfxQwMrVb062B6RAVosJnNCmpfcdhBCl9zKVW83j4QAEqa2SpEtIgMFxHwgUi6CXKpsY7R1TUYMSEObib8+RF9lbmxO2GnhnBERRSGVVGg6gLTv2PE5e/6VoPvUWnJ7oozES8iIAWn2/M07dvBlcr/BFsx1HFitaovaITJUi8VklNdaN2i31LQAqd2x4/+xe9m4WCsXmDC1FrVBZMiAGOV15w3aEREZMSAtCULK1PuMvRL+fh2NBp2o00J1WXiETAkQQUiReV8yOKK4oU2rQSfJCGJaIxY1YkAkHXCNkM/Y/QI/C2+xUsl33uamASODtlipQVp3B8YjZFqAMJXLU33GO5AoAJG5AjgjQwcEnNbQG7SbaMSAdEpcIfJk1p/8j1huiSYzzkb9yJAVocuaIiBRXkPVMbTcnBYkuKcMMYoaMSCKDnjTKSKmlqOjRTd1IRm8xUp70rrnTjmNORKIVyw6VYyAuF0RyDhhOlt0UwuSMQCiymuNTKq/A++KRZeK0GIxiYVyo7ItihZtMhLVfqPKZtZ6gk7IZAGJc6FcdYtOBZKOWjBYyN2ekBEDorP6jpNEs7EcvS3agmS98+OwWEzm13U032M9EJkyIFGuT6XToG1INq3jQtU/YLZpd2ktGN0KxJaQEQOioQoh0dgVzQaVQOLzI+gMmLEJMbxXjh0h0wYkyvWp9BtUBomnT+H6xk6yWui6V066XiJOGtOKkBEDor/6DnJ2IVyCCnh3GEacAyKpBV5e+145KcNmQwGIFSGTByTG9angvtl7V+IekHZa5+W17pXDXjuu6kGsCBkxILqKcPEds5GlT8flAZBWWuflte6Vkz391r+pAbEYqhMgksV3ImDEuEGllOB/Ih+ANCuhKK95r5zMYJ1VjkGKoswqdMSAgJenwpo9G+oSVBG3gxFUTroGzGxJXLHOun3D19O6KK91r5zLJ9SD9LIsk10gQJhki++YpxPO+Qj4d15jITCnnHQMmNEWVS9UqwRRXuNeOctvfaADiCEhIwYEIvniO2HdFspsVBUmNp+uY8C82EC6d2apSiXUASnHIJfz05Jne2Ma1ScBkquWjc6Mic1OWamHE/gn7Bwwp8iAVNK6owephlTHNKnOEQMCXp6qa20RaA7hTfmAEdIft48T/Y/ZNWBmQrRYTGUlWANi8o1DgJRSr5wASB/kC4i036sdV4OTvg/bNWDOdFl50s5AomHsATEgZMSAgNV7WbixIbHbKXeFa5Ii+cjdyXo5Odt4j73ylkE5tAytTwKkKnntGXzBOt8nXOmDIj55x4A581cbpeVCbHhOCM65F2B9jhgQE6fTXXva363o0861WxQjri4jXT3I5crfqA2f1YLOFYV6JQHiEiB1AS/pk4KCfV2GbosixzUBZFkdsuM2vA4herkGGoiMGBAzadRez5erk33CLxQkXUDq5yRwK2UuvTmOyTVaEEIIkKZ0a68HE1RWwhNSVRUQlZK+6gHWEGIt6Bc1YkDwV9+RSYcTe1i0dsnnJbdYgIBqrFkLNvef1n0jASKRyVeVY1B0dikyQBJbQNpV16gFHx8YP3uP3tmezV67tI4wMIvFZNOZmzS83i7FZLP6m7X+BhxAAnhN9Ox9dG7G9MJHZYQBAoLUEAgZUdulyAjBGDBDq8N7JaBn7+7spUvpwwuzlz4VEYZnsVK7hpAHtqalXAuyC6PxrIuVS/pBqw0zRIv1YJv3HY/OnXpXRBgkIDaEqAPbEGKxrUqmH1Tr82Kr0pMOEZBrs5eLxzdEhCFarNRrZ+4o7/3IVyWV8us1sbN3d/YmfzwoQBkuIPpHAt0pdPLrKEC1+CQEOXuPLhTW6sG2GIRorFFJInlXHIA8xRSoBkLFDRZ4anHtAgcHpDzQ+xRuCG2Fiju5DzzqinZvsajdKO6AAxMg4wk8tbhDBERyFItEGrDwz4O8UXskkQYt92fSSaQBCxuQowuzF+tzsUikAQv9NPfD5mxeEmnAwp8H8vCdjI/Xiv6jeXGIL/3xR7PZqQBxuSpH8Lzp6MOsov/mx77Dpg9/NAvQwI/OiUNAzhPM7USp1sUhnvQhDzsLMw46CuAvi3579rrnuA+2g1T0rjhG6j7B3ALSujjEjw5mp7Lv0ixuEKN3beYdkHzkd/QfvjOVfRf4b+Cj3ZkAxH2COQUk0CGtrNn4yZjs6+VNn3FzsS9V34AcFF8F1zyffQrSwH/84UwA4iG+U0DaF4d40aNzRc+xG+BkTEbn3/seg4hvBO8qTgd7jZ910K//oUws5wnmFJDQp9VDAJLZY++D9PIbwbdC9CDXXvxZmVAeEswlILKJWT4V4mzlQWavvH9cFvAPfzebZanjV+UYxPMXYNlzuU+wMQPi25GnBZMhAHknP4rlu8c8yo8Xvu59zDU2QEJYgIMAh3m5qfMOyEGeo1m2+v7ED37IAXnR84mQNiDOEmy8PcjB9invI9dr/PhVCEDyrmPX+1GsMGCOrwfxD8i1AP3Hg20eM4DFClTRu4HAHAkgIY9i+XcbKT8CKeTVU5YOw7OXDfYNOJKjWOEuDjnanb0YYNQTCpAyUQ88n9IODYiHBBvjmXQ+AyHgbHv/jnK3/Eb1+00U2GIN/kx6qItDroW9GsU/INlg+bVLQQbLQQfpPhLM7WTFMBeHFFM8Z+WUHc8KcEzioJhV6/u4nTCVni10OeZwn2CO1wWtXRziSwezyQGSVXSGyA/8XwDzX+x6EO9x14Ny5wk21IVzSSQvIkBIJIUIEBJJIQKERFKIACGRFCJASCSFCBASSSEChERSiACx0uHpYx/A/pFeTM463CGZLicn03T1i+fLF/Ln/GVSjwgQKw0HkEVyonwhf06A6IgAsdIgAOFqA0LSEQFiJQJk7CJArKQLyMffTpLk+KtXUw7Ix08nG/x5mt57K/vHc++n/B/c8lxm2btITv52K3n87XzrbJPlmcomW0nyLN+k+bZ1Adkmv326KDnzUqvz7MauORbiObdYRdH/O03/cys5/s/NACQCxEqagLxX3HqYZejF5JXyebrY4s83zqZNQP46+88TORHZf763VW6yrGzSfFsVkGf429heqAHJiz55kRf6diMAiQCxkh4gi2SDfTf/lidglolPvJ9mX/xneS4+9/t09V7xjyogZdqn9U0OTyfPX01XP+ep33xbFZDkxNViE9UgPXvf81ez0pKN76f3zrPXawFIBIiV9AApMjf76j7L/uD/ucxS+3KRtRfznK4CsvF2Wtm+vUmR9fW3VQF54qp4SQ0Ie18G6kn+ejMAiQCxkv4g/Yvf/dOZJAfkpHhDTkxaZGYdkErPUN+kQGK5lb1D+rYCkBPlczUgJ3nJvFRWXD0AiQCxkiYg984Ug5Cz5VEslohFXhbvVgFSbpIPIMTwQgXI+jkQkGoAEgFiJT1A2LB349nv/eZ8C5DiTRJAqgdia5vUAam/zQSQs2kNkHoAEgFiJS1Asi/lE1fT9RhEqwfpBKQ66nACSDUAiQCxkhYgIueyL+f1GGS5pR6DSDK/tkmxHTog9QAkAsRKIEAWyfq4kUjdylGs/I/VeRkg1U3yYQdnqv62agHGgNQDkAgQKwEsFjvZUJx5YGcokvV5kC/e4kdrM374uQgZIOuTGlk39MT7afFH/W3VAiSArPM9f94BSC0AiQCxUmVIezZL97V9r/1jkT954ud56uZn0vns8+qZ9Pz40bF/lQGSb3Kysgnfvv62agEtQJaVU+758w5AagFIBIiV9ABJPz6TJMe/L4YaZ7Nv543v5++rzMVKV9nzx99fSAfp2SbHy03YVCk+baox67BSQAsQNteq7EP48y5AqgFIBAiiDv+XmwNAgSYAk1ICBFWXHZ05IEDCiQDB0+ofHJ1BIEDCiQAZgAiQcCJABiACJJwIEBJJIQKERFKIACGRFCJASCSFCBASSSEChERSiAAhkRQiQEgkhQgQEkmh/w9zPYUZbkQDEgAAAABJRU5ErkJggg==</file>
</questiontext>
<generalfeedback format="html">
<text><![CDATA[<p>
<ol type = "a">
<li> True. At each of these points, the isocost lines are tangent to the isoquant so they minimize cost for that level of output </li>
<li> False. Costs and output each increase to the right. </li>
<li> False. Point e has more output, but the costs have doubled while output has not so it does have higher average costs. </li>
<li> True. The production function exhibits increasing returns to scale since </li>
<li> True. Point d has the same total cost as point c, but at a lower level out output. Therefore, the isoquant going through point d (not shown) would not be tangent to the isocost line, meaning it’s not a cost-minimizing level of output. </li>
</ol>
</p>]]></text>
</generalfeedback>
<penalty>0</penalty>
<defaultgrade>1</defaultgrade>
<shuffleanswers>false</shuffleanswers>
<single>false</single>
<answernumbering>abc</answernumbering>
<answer fraction="33.33333" format="html">
<text><![CDATA[<p>
Points a, b and c are each cost minimizing points for the firm at different levels of output.
</p>]]></text>
<feedback format="html">
<text><![CDATA[<p>
True. At each of these points, the isocost lines are tangent to the isoquant so they minimize cost for that level of output
</p>]]></text>
</feedback>
</answer>
<answer fraction="-50" format="html">
<text><![CDATA[<p>
Point d will have higher output and lower cost than point c
</p>]]></text>
<feedback format="html">
<text><![CDATA[<p>
False. Costs and output each increase to the right.
</p>]]></text>
</feedback>
</answer>
<answer fraction="-50" format="html">
<text><![CDATA[<p>
Point e has less output than point b, but a higher average cost.
</p>]]></text>
<feedback format="html">
<text><![CDATA[<p>
False. Point e has more output, but the costs have doubled while output has not so it does have higher average costs.
</p>]]></text>
</feedback>
</answer>
<answer fraction="33.33333" format="html">
<text><![CDATA[<p>
The production function exhibits increasing returns to scale.
</p>]]></text>
<feedback format="html">
<text><![CDATA[<p>
True. The production function exhibits increasing returns to scale since
</p>]]></text>
</feedback>
</answer>
<answer fraction="33.33333" format="html">
<text><![CDATA[<p>
It’s clear that Point d does not correspond to a cost-minimizing bundle of inputs.
</p>]]></text>
<feedback format="html">
<text><![CDATA[<p>
True. Point d has the same total cost as point c, but at a lower level out output. Therefore, the isoquant going through point d (not shown) would not be tangent to the isocost line, meaning it’s not a cost-minimizing level of output.
</p>]]></text>
</feedback>
</answer>
</question>
</quiz>