-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcost_min_sample_2.xml
93 lines (88 loc) · 3.04 KB
/
cost_min_sample_2.xml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
<?xml version="1.0" encoding="UTF-8"?>
<quiz>
<question type="category">
<category>
<text>$course$/cost_min_sample_2/Exercise 1</text>
</category>
</question>
<question type="multichoice">
<name>
<text> Q1 : private_fall_quiz_2_q4 </text>
</name>
<questiontext format="html">
<text><![CDATA[<p>
<p>Looking at the following plot of a firm’s production function, represented by isoquants for production levels and isocost lines for different total costs of production. Which of the following are true?</p>
<div class="figure">
<img src="../isocost_quiz.png" style="width:35.0%" alt="" />
<p class="caption">Cost Minimization Problem</p>
</div>
</p>]]></text>
</questiontext>
<generalfeedback format="html">
<text><![CDATA[<p>
<ol type = "a">
<li> True. At both points, the isocost lines are tangent to the isoquant so they minimize cost for that level of output </li>
<li> True. Costs and output each increase to the right. </li>
<li> True. They have the same production since they are on the same isoquant, but the cost for e is higher because it’s on a higher isocost line. </li>
<li> False. The production function exhibits constant returns to scale </li>
<li> False. Point b is, in fact, the cost minimising combination of inputs to produce 3 units of output </li>
</ol>
</p>]]></text>
</generalfeedback>
<penalty>0</penalty>
<defaultgrade>1</defaultgrade>
<shuffleanswers>false</shuffleanswers>
<single>false</single>
<answernumbering>abc</answernumbering>
<answer fraction="33.33333" format="html">
<text><![CDATA[<p>
Points a and c are each cost minimizing points for the firm at different levels of output.
</p>]]></text>
<feedback format="html">
<text><![CDATA[<p>
True. At both points, the isocost lines are tangent to the isoquant so they minimize cost for that level of output
</p>]]></text>
</feedback>
</answer>
<answer fraction="33.33333" format="html">
<text><![CDATA[<p>
Point d will have higher output and higher cost than point c
</p>]]></text>
<feedback format="html">
<text><![CDATA[<p>
True. Costs and output each increase to the right.
</p>]]></text>
</feedback>
</answer>
<answer fraction="33.33333" format="html">
<text><![CDATA[<p>
Point e has the same output as point a, but a higher average cost.
</p>]]></text>
<feedback format="html">
<text><![CDATA[<p>
True. They have the same production since they are on the same isoquant, but the cost for e is higher because it’s on a higher isocost line.
</p>]]></text>
</feedback>
</answer>
<answer fraction="-50" format="html">
<text><![CDATA[<p>
The production function exhibits increasing returns to scale.
</p>]]></text>
<feedback format="html">
<text><![CDATA[<p>
False. The production function exhibits constant returns to scale
</p>]]></text>
</feedback>
</answer>
<answer fraction="-50" format="html">
<text><![CDATA[<p>
It’s clear that Point b does not correspond to a cost-minimizing bundle of inputs.
</p>]]></text>
<feedback format="html">
<text><![CDATA[<p>
False. Point b is, in fact, the cost minimising combination of inputs to produce 3 units of output
</p>]]></text>
</feedback>
</answer>
</question>
</quiz>