-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathQuiz 2, A1.xml
179 lines (170 loc) · 52.9 KB
/
Quiz 2, A1.xml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
<?xml version="1.0" encoding="UTF-8"?>
<quiz>
<question type="category">
<category>
<text>$course$/Quiz 2, A1/Exercise 1</text>
</category>
</question>
<question type="multichoice">
<name>
<text> Q1 : private_fall_quiz_2_q8 </text>
</name>
<questiontext format="html">
<text><![CDATA[<p>
<p>Looking at the following plot of a firm’s production function, represented by isoquants for production levels and isocost lines for different total costs of production. Which of the following are true?</p>
<p><img src="@@PLUGINFILE@@/plot-1.png" /></p>
</p>]]></text>
<file name="plot-1.png" encoding="base64">iVBORw0KGgoAAAANSUhEUgAAAyAAAAJYCAMAAACtqHJCAAABp1BMVEUAAAAAAAMAADoAAGYAAwQAA/8AOjoAOmYAOpAAZrYDAAADAwADBAMDBP8D//8EAwAE//8ekP8fBAMzMzM6AAA6ADo6AGY6OgA6Ojo6OmY6ZmY6ZpA6ZrY6kNtNTU1NTW5NTY5Nbm5Nbo5NbqtNjshmAABmADpmOgBmOjpmOpBmZjpmZmZmZpBmkJBmkLZmkNtmtttmtv9uTU1ubk1ubo5ujqtujshuq+SOTU2Obk2Obm6Oq6uOyOSOyP+QOgCQOjqQZjqQZmaQZpCQZraQkGaQtpCQtraQttuQ2/+ZmZmrbk2rjm6ryOSr5P+2ZgC2Zjq2kDq2kGa2kJC2tma2tpC2tra2ttu225C229u22/+2/9u2///Ijk3Ijm7Iq27I5P/I///bkDrbkGbbtmbbtpDbtrbb27bb29vb2//b///kq27kyI7kyKvk5Mjk////AAD/ADr/AGb/AwD/BAP/BAT/OgD/Ojr/OpD/ZgD/Zmb/Zrb/kDr/kNv/tmb/tv//yI7/25D/27b/29v/2///5Kv/5Mj//wP//wT//7b//8j//9v//+T///9hvYlQAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAgAElEQVR4nO2di5scxXW3m5WtC/ls2LAxIqAREShyjM2HNgZkxyiQi6MVZjH5jD+IlogNAlmywyKIoo2k0Y5AgtVs/9Hpqr5M9/StqutUnVPV532e1e6OZuZUT9e79au+RjHDMK1E2A1gGMqwIAzTAQvCMB2wIAzTAQvCMB2wIAzTAQvCMB2wIAzTAQvCMB2wIAzTAQvCMB1ACfLo3IvZTwdvr08mr14Gel+GQQVKkK1JJsijcxPB8x8DvTHDYAIjyMHWJBdka/LC5fjhxckLn4O8M8OgAiLIn34xyQV5sC7HjkfnTr4D8c4MgwuEINcnk9f+mAlyvfj+OsA7MwwyIIKc+k28l4mxNXlDfs9/ZxivgZqkZ0IcXMyi1YN1noQwAWBZkKcEG3G8MehrNWHoa9W/RBXbNSjXH+sXtiD5ht5oeIlUENusuinTWR+xPNOJ/YhFXhDsHootKNNFwIIoj6LQHVS5MHB93bpQYNV1UhhYkIatWCyIq/osiAWgBcn3fyz2g3DEol6f6QBakPqedBZEpT4bQhRoQQ4uTk5Vj8UyFGR4z/EmYkE1gCOWBaAFiR8uH81rIIhZz9ESBNIQFiSgwuCCxA/fTvx4dbEbHU0QcmU663PGoon9MwpZEKX6LAhNAhZEfQDGjlhADeCIZQEWxLSMSWHYBrAgFghYEHJlCDeAaYMFcVemuwFsCEkCFkQvYgH2zwEjP0gDOGJZgAWJWRBP67IgzrIPesJBbwDTAgvisk5nA9gQigQsiMYAjB6xQFrAEcsCLIhxHZPCoC1gQSwQsCAE61BuAdMIC5LX4UkI00DAgugMwKDdc9DID9ACjlgWYEHMC5kUhmwBC2KBgAUhWaizBZyx6EFfkBHN0lkQetAWxKjj+hWxAJrAEcsCLIhxHaPCkE1gQSwQsCC6dThjMXVYkKIOC8LUCVgQrQEYsncOHPmNm8ARywIsiHkho8KATWBBLBCwIDQLdTcBuw3MMiyI40LdTcBuA7NMwIL4FrGM28ARywIsyKIQlCEsSECFAxaEaqXOJmC3gVmCBXFeiXYbmCoBC6I3ABOIWKZt4IhlARYEoJJR4aU2uLgpIzAsiFkFjlg6bUBvBFOBBSlVQu+cFNrAVAhYEP2IBdQ5h4/8HLHIFfZAkKFdRvPjoyKIm5PwIWFBzCpgCTKglJtK3W1AbwRThrggI5ul02gEUyJgQTyMWO6ucwQJRyyzCiyIXiMcbZWAgwUxq+BRxMKPNyQawSxgQTBKEW8EsyBgQXQHYLC+aTLyO9yuDQZHLLMKLIhmI1gQQoUDFoRwKfKtYHJYEIxS5FvB5AQsyJCIBdI3jUZ+g1ZwxLIACwJSy6wwUCtYEAsELAjpWtRbwWSwIDi1ultBoBlMSsCCeByxhjWDI5YFWBCQWmaFgZrBgljAB0FcbuclEG5otIJJYUFwatFvBiOhLojTrZ5APRMgYg1qBkcsC7AgILUMC8M0gwWxQMCC0K7VAWcsQrAgSLU6YEEIEbAgwyIWQM80HvkHNoMjlgVYkKVaLIg3dVkQgdO4QSTbcMaiAwuCVqwDKu1gQhZkwABMJGINbAdHLAuwIDDFDAs3tEO/ISyIBQIWZGAxEtmGSjsYFmS5GImOSaUdTMCCDBmAQTomwMg/yFSOWBZgQYCqGRZuaAcLQqGwF4KMbzsvnYaMHRakVs1ZsS7INGTskBfE7RmoIDpCjPxDGsIRywIsSK0YCUGGLDYLYoGABfGgWgdkGjJyWBDMah2Q2SUzcgIWZNAATCpiabaEI5YFWBCgaqaFa7AgJAoHLMjgajSSDZ2WjBoWBLdcOywICQIWZNgADNAtgUZ+7ZZwxLIACwJVzrRwDe0hhAWxQMCCeFGuA85YFGBBGsoR6ZZ0WjJiAhZkeMQy7JZQI79uUzhiWcAPQVxeqpYF0YUFMauAJYhBPYfluiDUlNFCX5DxztIpNWW0BCyI9xFLd/DkiGUBeEEe/nIymbx6eVHBQ0HMDIFbbywIemFwQR6sTwQn3ykqeBixqAQbQk0ZK9CCHFycvHA5fpj8+3lewTNBKPVKSrKOFGhBHqw//3Hy7dG5YgjxLWKZCwI48mu1hSOWBaAF2Zu8KL4lA8kbeQUWZDgsCHbhgEcQX+p1wRkLG2tzkBeLCj4KQqZTUmrLKAHfinXwkdyK9Vo6R39KkIyEGwZfoo+YvF77SxZ0WM+XtpD72jB6PZIgD34hBTlV7Ajxbg5i/Fd7cOEGdIYzyLo6YNX1dA4iBo9kGPF3DkIr1pBqzAiBFmRr8nr2PZ+EsCBGkGrMCAEW5OBiNnI8WM/3FIII4vSuyKazdNCRX6MxHLEs4IEg7m8bTkkQjcawIBbwIGJxxiLUmtEBvycdfJLOghBqzegA38x7fZLyelGBI5YZyq3hiGUB+PNB/lOcD/JzwPNBcAQxMIQFCaiwB2cU4kQsOqmGVmvGBgtCo2IXtFozMgIWxGAAJhWxlFvDEcsCLAhgRfPCjahmLBbEAgELYliRUKqh1ZpxwYK0VSTUJYk1Z1QELIjJAGzUI8FHfkVBOGJZgAWBLGleuBkWBK2wL4KMejsvZyw8fBCEJyHEmjMmAhbENGIN7pEWRn6l5nDEsgALAlkSoHAzSsKyIBYIWBDfSnZCrT2jgQUhU7ITau0ZDQELUhmAo0ivHcQillLG4ohlgZEIEkWahpjM0q2sNxYEp3DAglTaMMgQo5rAUGvPWBiFIFGkbwi1Dsm7QnAIWJDFAFwT5LvHk59/aKHmUmFI+hvEEcsCoxTku8cfi+MnHnuyr+ZAQ+wJ0t0gFsQCAQtSbkJVkC/F6PFt9P2+mqQiDbkGjQNvBAExJPv1ifS37/UWNakJDrkGjYKABWnfzNuTrhZFtWvWCgPS+ylwxLKAC0F2jN/DWJDqjsIvox9YqlkvDAgLglDYiSDGhgCni2SS/mSvJfQyP70WjQA3gpgaAt0z5GbevlGEXHdkQRBwMgcxNsQ8YrkqClG4lZ4WccSygJtJuqkhLIikZwhhQSzgaCuWoSEo2YJeoOGM5R5Xm3nNDEEThFh3pNei4HG2H8TIEJSI5f7+0710O8sRywLaglx58/gzl/b/4UP1ClkJE0NYkAwWxHVhTUFmZ6IoOnRp/3R0QrlCXmJnuCI40YJgoCHYpMDREyQR49nfnT50af7bKDqrWqEoMdwQFiSD4LwocPQE2YyOJZIcuhTH28lPihVKJYYaMqhfgEQs19c87aOrSRyxLKAlyPz8yoVMkNma+FepQrmEiSG6rzH/+IgK0tYmFsQCWoJIN1JB0n+VKlRKDIxZnLEyOGM5RlMQ0xFkqCEsSA7FNoWM7hzkRCrIfHPQHEQyRBG8iOX6mqd9dLSJI5YF9ASZrUXPfXb60L99diZKxhLFCrUSAwzBEQTjosC9sCBOC+vuB1nLTl5dUd3K23hGobYhSMGCYp7hWYhTdPekz987nuhx+OU/qFdoKqFrCAuygGSjggXrnHRNQxAjFsIxLt20NoojlgXQLtqgZwgLsoAFcVlYU5D7bx3PeWbYZt4CLUOwYgXJOEOyUaGiJ8h0bXENtoH7QRboGMKClOBpukM0DzWJjvz6aobqNL39ulgahgzpExADMMWI1doqjlgW0N+Trl2hvYSmIZqFoQTBmPx0w4K4K6x/LJZ2hY4S6oZwxirBGcsdmoeawI4gGjvVWZAyNFsVJLonTB1VP9c2r9BZQtUQpIiFtX25h+YhhCOWBXQ3856JDv/lS5KfXlOs0FNCzRBMQVAKd8OCuCqsfbAi3GbeHCVDMCMWwTRDtFkBoruZd+Vn72f8HmgEUTMErUPQ7IksiCtQN/PmKExE0JIOzYjV2CyOWBbA3cyb028IqiCalV0JstwsFsQCyJt5C/oMQY1YFMMM0WYFh/ZmXsWZR6mCWokeQ/D6KdGeSFXc0NCbpL/1kyh65iXYzbw53YbgJR2aEaupXRyxLKA5B4ksbObN6TdE8Y0yAAXRq+xOkGq7WBALaI4gLy2AHkF6puo8CVmCarsCg9RtoLsMwesOVDsiG+ICUoJ0xSy8qQDRiFUXhCOWBZR77/ytn16zHLEErYawIDVYEAc1lHuv2Elod5Ke0mYIbsQiGWXINiwk1EeQT39/bf7p+wvgjsWq0mIIYmeg2g9ZEAcQm4MImqfqiLsjdEs7ixxLhnDEssDQY7GG3v5AhUZDWJA6LIh9hgoy+PYHSjQYgpgn6EYZui0LBvU5yPmoiupRWUMEaTAEsy+Q7YYsiHXUe++06ofy5d0HCdJiiNZbwA3AmqUdRo5KyzhiWUCj93599bPThz7ILhunUWHYdoDaRIQFaaAyhLAgFtA8Fkt172C5giixM4zy+yBHLKJJhm7LAsHNZt5BN+5cMgSzK9DthoTdDQNHggx6ZdUQzCM+9Go7jRylpnHEsgBpQSpTdWxB1Is7F2QVoW4JFsSsgoEgZUOwIxbVIEO4aSFAXJBSzELtCIR7IWV5A4C6IAtDtDsC5ABMN2KV2sYRywJujsVaCHIn6e9ffNPwtPv1B7NXZYagC6JcHEGQVYS6BSxIzuBjsXJB5jdvxUKSe7VnzRqsyV9VMkSntaBQzjGU2+Y9bo7Fyrv67i357c6t2rO6BMkMYUFaoNw273FzLFbW1fdLQ8f85s7O7eT7TEwy7ol/787S3eeFKotgJg1BPeqccMQqMhZHLAu4ORYr6+qlYWJ+87b8kg/NEkO6RpB0qo4uiGp15x2GBbGHm2OxckFuFI9Ob6T/5A/1CJIbol0dCtIbU0k3znOcbuYtWTC9lf2+myWtHkGkIpi9gHQfJN04v4G/7M/BR+uTyV/9alGhPgfZ/+KbQhDx6M4N+WP7HCT9NTFEtbUC2AGYcsTKhhCOWBYAv+zPw3MTyWtFhdJWrGzz1Z0b8VRoMM3y1X7vHESwqnFbdQG8IIqGIHQYFsQW0Jf9Obg4OXU5Pvj3ycl38gqN+0HySbp0JLFjv2HfyLIgq8o3jbYB6RjDsxBbQM9B9ibPfyy+X5+8mFeo7EnfzTNUvpl3mj2wK3+rUBME1RDaXZB26zwGWJBkAHljuYLZsVglVlNFVF8OPACr/5HGiByYQwhHrDJXc/7Q9L+PzqUDSLkCqCCKt1UXjEoQTENYkAX/sdY9SX+w/sLnf/zbyeTUbxYVYAXRMAQY2imGZyF20BNkOxHj8PGUZ1oEeTvdivW6/P0pwcZwQTY2Sl+iC2ykhlQed/QlyyPUVfxaJd4+cl9q6O1JPx8du9b5jD2xgffz+OCj5q1YerRdGUtxqq78GSii/DcaurAaeEMIzvI6Kqx5uHvfbaD38qFjq2Urlg6tl45TMwT846MtCJ4hLEhO/1lSD9azkUNMRrIK8IIgTUSIp3yehdhAbw6y2TeCPFjPtmIVP9gRBMUQ6h2Qevu8RE+Q2drRDzufcHAxG0H2JnZGEA1DrEQslR6IFTmwhhCOWDnzt85E0eHOgxXzucdWNhepCjK9q1Ou+wLvvYbAf3zEBdlgQeDRnIP0Hqz4YH3y6uWWrVj7SZ8Wx2KJo0ykKbvp73H22K2lxxrvEbL4zX3Kop5heBYCj94IonCPwr11uRvkZHHESSHI/Obt6V1xVvru7cSVxJDdu8VZ6vIoRvHznVvyGEZJjyDuDSHfAam3z0PgT5h6+HaiyM8vLyrkgsy++GZ6N/lHHtmeiJCebZse5p7/LA/qzY+C7xOkxxALA7BaB0SLWEgGc8Qyq1AIsnNvMQdJBJmWrm2SCyK/54e+9wrSbcgIBcExhAUp+Prq1e6DFZsqFHOQ3Z3/yQURDty5PRXnEkryiCUHD3VBVHeqQ+FFxiLdQO+AnqQ3VFhsxRKXVRR9P5mR38rOACmGkXRyngmSeqQgiGND6Pc/+i30DD1BfpwdqCiOWWw8WLGpQmUz7252am1igpyfZ6PF/o44wfCG9ggSdyhiYwBW6n6IEQtFEI5Yda6sPdd91GKpQkWQ+c10dEgkuHM7LmTIz7ztn4OoGzJKQTAMYUEamEYnVCvkgiQSCEHu5aNE+j0dUSqnpnduxWpa+e5iFv0EQ7+FfjFUkP3TRxWHkEKQZGoxvXvnRhKl7sm5hxxMsuuciIglM9du136Q1j/gbg1xVGogbAgowwXRn6SLPelicMj3mmffpSj5Xvb8QnICdUEaDbEyAKv0PtSIheAwR6wGtgdd3d3sWKyudd8wEbEmSF/3IyCIU0NYkJziyoo/WYv05yDa6AjibHuvBwGGQxYgg/eDDNqKpUVDh+9c824M8aDzsSCADD1YUVWPTJAhXbfhNd1rfskQOwOwQu9DjljOJeaIZVZBlNgZQMN79az56ovGLYhDQ1gQswqAJfrWvIuU5UN+4ZAFRliCuDDEh87nQxs9wS9B+v98lwyxNAD3dz70iOXYEI5YZhWcClIyxNbHx4K013ULC1JDYb1bT1le5BcvGukD4QlifZehH33Pj1bSR6/3vvus6nmEpQquBckNsTYA9zWCQMRyKghHrBz1IxTLFZwLkiliVZCuVpAQxKEhLEgODUGUDbGFH+nFj1aSR/f+ID23P2iqgCGI3bm6H12PDYFA81isN6PoeM990msVQLcDqK90i4b0dD0aEcudIRyxcgZf1QQOjXVuzxAWpLOuM8gJonLp0XoFLEEsTkQ8CS8csszxbD+IXte0ZognPc+TZpImYEHEAGzJkO6eRyViuTKEI1aZK28ef+bS/j9030enUgFTEJuGdBdGoKEuC2KKZu+dnZHT82S2rnpKOmbEEtgxxJfswiHLFL3em4jx7O9OH7o0/20UnVWtAC4IAUO86XjeNJQqmjfxjI5lu9O3k58UK8BOc9RXeD4AWzOkr7Brmuq6EIQjVs78/MqFTJDZGs5+kAGCWDHEF0FcGMKC5Eg3UkH0rqwIyJD1bcEQf6KLNw2liaYgPo0gJSwZAv2eVvBHZZLozkFOpILMN/2Zgwjgdxl29DtSEcuBIRyxCmZr0XOfnT70b5+diZKxRLECBUHgDWFB+urah54gwpCUFdWtvDYEGbS6oRXxJ7lwyDJAt/fO35P3X3tZ/dRbKoJAG+JRt/OoqeTw7Vgsjb/c9QEY1JD2XkcsYlkXhCOWWQU6gsAbolrYCe117RrCgpSYXxF3un32XzQqYAnSBKQhPgUXn9pKC83eO80n6UdUN2LREgTcELA3swsLMhTtzbxHfn316tX3nlY+45ZUxIpBDWlrCb2IZdcQjlgFm/lVTfB2FJoKAmhIW6ejKIjN4Y4FyZGHmqSgHWpi/rcQ1hCgt7IOh6xhDL1wHNrBigDdEswQrzqdV42lg27Eynegz9Z0bgMNiuqKbh+AoQxp6XMkI5ZFQThiFdzPM9b9M1jHYkEIArZT3SdB7BnCguTM3/pJFD3z8vv/mnw7onp5RXoRKwYzxK/Y4ldriTD8yoqql1ckKQhQzPKry6361VwaaI4gLy1BeQTpGYDBDNEtbI3eupYE4YhlVsGGICqrue/jg4hZjW0hK4glQ1gQswrgJaDWMpQhEG1xBIcsXcYsCIQinvU4z5pLgIAFURmAjQ1p6nF0I5YdQzhimVWgLIj5XN0zQWwYwoKYVSAcsQSGhvgWWnhbrx6+CkLLEKimuIAF0SJgQZQHYDND6q0hHbEsGMIRS1DbSYhzE08JsCAAhgwsDItqXRZEA+XeWzvMBO1wdwupxsgQ7yILhywN1EeQ8g088W7iKYFfwSaG+Nff/GsxHj7OQcAjVmxuyODCgCjXBd6SxRHLrIIXgpgYstzdyAsCbAgLUuZqyqe/+xvcOQh4RBi+U93DxOJhk5HQ7L3vkpmkw69eNoSpo9d7txd+HFG9uKIFQdQylv4APNSQpd5GP2LFoIZwxMqZn49OyPsUzt9VviyWT4IYGWJUGAR9QWAMYUFy5HWxtuUt0reRbgOdYi0fDIxZPgYWH9uMgP51saZy8EC87E9sc9+cgSHgbbEMG6KCviCpGogXjosV1+3AAXiQIpUGeRGxYjhDOGIViAvHpdcfxbv0qMCmIIMM8VcQAENYkIJptPJKMlM/dm2+GWFGLMuRxtQQXwDeox4kmr13Mzp0KbuRJ+Yk3Xbm1zfEz67mZ6udott7r/xNMgs5E0WHle8xhSaIyQBsZIgvESsGMoQjllkFHwXRN8RPQUAMYUFyaNz+QGA/GgwyxE5TbMIhq4ehguBuxXKxXnUN8bSredpsZ6ifMHV+6YxC1K1YKn+vTQdgTUMWPc2niAVhCEcsybTqxwrqViwXggw2xENBjAxhQVK+vvrZ6UMfZOeDaFTAEsQcPUN8DSu8N6QLzdsfqF7KpFzBX0E0d6r72tHYkA483cyr0hkhBmAtQ/I2+RWxYmNDOGIJxOhRuTYW4nWxYmeC6MWsrFHeCWI49rEgArGJt3JtLNTNvA53O2gY4m9U8bflttG4Ltbvr1WujdV1XawH6y98XlTwXBA2ZNRY6b0HFycEBAEbgNUnImk38y9imU1DOGLpcn0SlCC6hvgoiIkhLEiJ+ZUfHz9+/NnOY3kfrDsSxF0mUDXE46TCG3sb0ey907X8qj8XWp+TBKy/sz8HcXxwIBsyUvR672wtOvLrq1evvvd0x0asrcmLDibp/YLADsCKhmB2MtMFHmoIR6yCzehYuu1qvtl6Yay9JF4FKIgHhhgv8EBDWJCc9HoNktbD3R+dO/nOYjPvU4JkOTbgv9INRnbeu/FLTNX7n7fqvF3An+kqgXY4+bIiSP8JU1uT153sB0E4QUltYxbWCCJmhsZvwtOQZfQv+5PSduG463L7lStBOtel8h8JdVQMcdnHvox+mP+YbjsxfschrbfwQdMprPeR3s8z1v0zK42bsR6sJwHLjSC9f6ptfHyqhlgo3cRCkPwAINN3HDINYUFy5m/9JIqeefn9f02+HWk8YvH6pOD5j7MKWIJYQcEQh0NIIcjiEDnTt+SNvVU05yBLp93WNvYGL4iqIfYb8m3y8f8ZvCBsSBXNEeQltXtBBxuxYpWpupMe9m30PeEIvCD6hnDE0saZIF3r0dbH12vIhgtDZLp6woYg2oawINo4EQTvSlR9hrgQ5InHnozjr8An6RJOWQvs3MQzcEEoGLIkCNRm3hQ2pMDLm3hmIEUsQachGy4EkRGrtB8EZkdhjpYhHLEKqNzEMwVRkM6JyIaLIeTb6LHSJD2vC4aOISxIDpmbeKag5oDuqbqDplU288LDKSvFz5t4ZuCuQmxDLMOGSPy8iWdG9xq0PgC3GSILI/Qu4AVWNoQjVg6Zm3hmIAvSZkghiGNDoBdY1RAWpIDKTTwz0ENAV8pCb5w5nLLc3MRzyI3HlcBffx1TdfzGmRPCMhji4iaeA+47rkjn+nMy8jcZkhV23rssLLDSMnDEKjHkJp4D7qqsCL4gTTErIEGUFoIFMasQDbnvuBokEkDr0oUQUEY/DXFz+wNbhtBYe21LR6N1hqyOXJFBglz5QKeCKGHJkM51527kX1q6orDjrmVngfsN4YiVcf/v00278/NdF1asVZAlLBrS9n8O11t1qr4o7NYQSwvcawgLkiK2XslNV/N319Tv4ZnvB9G7m5kqVEb/lqULJJ2MOWWpC7J/Ojr6YfbzfFP5aPdiR6EVQ+isODYkTNQF2S7vGhTH9apWKEpYUKRrxTke+RcLVyrstGNZXOBOQzhiCRIlyqlqqrEnvfjRkiEt/+V6vRULVy7s0hCbC9xlCAsiWDo6ceDBiuCGUBr6G/0PJZyMNWU5FgTcEFJrrcmQYPrVSA3RiFiVi40OPpoX2BBiI79cumphd/3K8gK3bu7liCXZNJ+DSIAnIrQEkYYsFXZmiO0FzgypXR2CBZFMjbdiZcAaQm3cry9cONGk8MPiOT7UUF9SeR5I/vOA/SAlIA0h1/tCNiTO/RiPIXp70lde/uBaPP/sn5KflI81afosAQ0hFrHiphHSkSBOEkfDNU45YmXcP7O4KtaH/U/PKzSVgDOk/c8z2nqrGeJoCGFBLKA3VH725tPJR3P4p+p6tJ2TDmsI0FuBgWSIA0Cvku0Dbs4HaQDMEJJ9b2npWBBvQRMEzJDWzoc68mMYArvA3z0eRY/VH879KC0ORyyzCm0lgAyhKQiGIaAL/N3j4tq/36//R+7HYnFYELMKrSUADYF4H2CqS+ddyPoq+kHL/+R++LU8Q8EUBGiXIdVV5bchX3ZfF3s0hqAKAmNI26pCH/ldGwK6wD2ClI/MQv+gbYIrCIgiZAWpGmL/by7oArdHrIyFIfgftEWwBYEyxPAtLFFZOL9CiZiki692Wo/uDYqhgsw/ff/3aofz9m4xNzaE8Gry2pDGzbxlxqDIUEH2T0dPqx3Q279LydQQ0qcplBWx3J3cLzCyIZQjljijcPqcyhiisM8VwpD6ozQEKRtiuTshLDCuIZQF0aigUMLQEOLj/JIhqG0BJ/SYNVyQryFvwWZmCPU1xIb4i/pFG/6x+vsnPwK9w5SRIc1riEjEElQNcVfXCXiGkIpY+6efK/02f1f5lELF4z6NDak9SEiQxUTEZl/CWuANLEOICRItDBGnTkHf5dbEEPpjvBND0Ag4ZWlctGGt2Kz7yVqkfM0G9Zt4Ghjiw/rJFi/MvhTuRERjkp4bksQr/dsfqDB8p3rj2qEUsQTWDUGLWDGSIaQiVpwbIuKV0g6QvIJ6CTNDlh+jJkjFEJd1bbO4L7xjRagJIq5rciKJVyuvaFXQKTHUED/Gd9uG4BJmzNLbDyLvAK1xRRNZQavEQEM8WTWjMCSsJdPcUZgYckwjXskKeiUGxqyGFUMuYsW5IZb6EWrEkjg2hFzEitOUpVlBs8QwQzwRxKoh+II4HkQoCqJviP4FYoYo4s3YbnUMIUBoMUtnR2EV4D3pZQYY4s9aSRfOn/bqEthMhKQgQ+bq9XVCMmLFFg0hELEkzgyhFbG+vlrlD6oVBh0wrG1IfZ1QFSRTBEMOmE8AABUlSURBVL4TURHE2SBCS5DBFYaV0DXEq2FdGBJUEFkmnJhFVpBBhgyrhMFIDPF/8egKomtIbX3QjVgCC4aQiVgSB4aMOmLFuoZ4JkhhiOu68LTUtW/I2AUZYMjgUgjkExHsdtgjhJhFWhA9Q7xbF6MxxOclpC2IliHLq4J4xBLAGkIsYgnsGjL6iBXr7VT3TxBYQwgKYlcRFiTWMsTH0Tz4lOV7ziIviEbM8nI1sCG08UAQPUMWv/kQsWJIQ0hGLIklRThiZajGrOpK8EQQOEPoCmJJERYkR9EQTwfyEaSshSG+LaYfgqgq4uEKEIzCEE+nIr4IomZIZQX4ErHiYpeh87owKNeFVoQjVgVVQ/KfPRIExhDygkArwoJUUTDEvyE8J1UEuxXW8W4q4pMgCoZ49dlXGYkhvinilSCKhmQ/+hSxBKumhngQsSRginDEqtFrSOmD900QY0N8EQRMERakTp8hHg3edYzHEH/wJmf5JoiSIaAFXTIiQ3xRxDtB+gxZfOjeRazY0BB/IlaKsSIcsRpRMET+4KMgRob4JojxVIQFaaZ7p7oP43YHqSHi0pXYLXEB/W2+PgrSbQjtz7sfYUh6cdf8ka+iH2A2yC7UFfFSkO6YlX/aXkasuMEQVUG8i1gpwxXhiNVOhyH5h+2rIHG0kyuS/h64IMMVCUmQHX2637bHENhlcEtUGJL+/lX0Z1H02JO4jbIL3aDlSJAB94xSMKTlGTQ/aXWEGqkh6e9fJXZ89/hjuI2yzSpRR9wIMujGnGaG+ByxCkPS37+Kvq+Us7yNWCn6ioQTsYbd27n3VW2GpJ+yt4IUhmR7RL6KfhjH3wpLLNcdCFhdXUVYkN5nNBtCcKTWo2qIqiABQC9owQvyp19OJidfvbyoYFGQoA1ZXZWKZOkq6J0hZYg5Ai7IRxPJyXeKCjYFaTFEfr7+RqyczBDVSbr3EStDWREfI9be5OSv4vjhxcnzH+cVKoLcSVb5F980vPB+/UElrZqn6qh/geDWmxxEVv9cbuZ1WVcP+LqKingoyMHFyRvi+6Nz6fe4Ksj85q1YSHKv9sJZgzVq406jIXSGaDNSQ7BbgQCZoAUsyKNz2cixNXk9r1ASZPeW/HbnVu2FwwVpjlkEPloQVsd0ikiVoYpEPWi+m2Z1VRoF2S8NHfObOzu3k+8zMQLcE//enaV70AtVlGcuDYZg/vGBHfnVDQknYmX0DSNNhXsF0DTEkiCPzhWz9JIgpWFifvO2/JIPzRJDDEaQVkM0Gw0FsCCrqtfMCk6QkiGNi99QWKX7a/V5S4Jcn7wovz8l2CgEuVE8YXoj/Sd/qEWQjQ21L2FI9bFsZ6Hi60l/ZYagtwPlq+SIyvNV+nOUPlcNO4LsNW/mLVkwvZX9vpslLaMRpGmqHsosJM5TVihLo0vPMFJFURB1rAiyt37yjeKXhjnI/hffFIKIR3duyB8Hz0Hkk5cNwZuFKP91UmdH5fLWFuoqYb9uiyMNhb0Q5Hpp/Khuxco2X925EU+FBtMsX+2bzkHSp1MxxEaHUTEkXEFaFPFUkI8qfrTsB8kn6dKRxI79hn0juvvflwyhsBUdjh2lQSRklKKW6M/z84cuJd9ma8dK/7EZRUevLZ6jDLggB1uTUx+XH6juSd/NM1S+mXeaPbArf6ugfYAKGxI2q/2OyP48WzuR/LuZCyHYPLF4AFeQrckLn1crWD0Wa+kVZUU2sASxFTkyQ1oXKeSIlVNxpDVibSdDyGzt7OLh2V9cyP6JkQW5vuyHU0EqhmxgDSHWOkyPIWMQpLL3sFWQ/dPH4s1jYiiR+85XLkzLowmmII/OTXJezCu4FGQpZoUWSXb6BpFxkAnScSDJdOWfs+EiZfvYNIrkzCTGFWRvgi1IxZDgOlNhSFBLNYC2jyDrz/Pz0Ynyw5tRMp5MScxB6hUcC1IYIgZglL5kNXJ0DCLjiFjdhfP+PM2HixQ5P98/fbbyHCUCFCQ3JExBOgYRFmRZkGIOsi22+LIgxQsXMSvEOFIYEtqCAdAygshf9/+awFashgruBVk2ZPD7EIUNaaVFkPn5ZEqyzXOQ0mt3dtIBGKEf2Y8czYZwxGoVRMzaiexJr1coCTK9q/NKE0GKqXqQgsilUzk0yQkUBemCrCD7yWpNj1bcL442KZ18mx6vuLt4zEgQTEMcUDIkvIUzwGdB5jdvT++mZ6XvChfkkYu7hSHzm+LBO7fkMYwSM0FGZEh4SzcYnwVJRojpXTFM7KeHJ86KfyR3/lv+173FUfCGgmxkU3XnfchN5JALV1GEI5bSKbd6J6W7FGTnXjoHmd6e1QWZ3ZDnTIlf80PfTQWJy4aYvZdmYSeU9Ue9IQolQXqvaaJ7WROXc5Ddnf/JJumzWsSa35TnTMnBA0gQ+RYohjgiy5Ccs2zidCuWuKyi7PvZuFGakN9JL3CSCZJ6BCBI8IawIpZxvZlXTs/zJCVOKkznG+LiJtAjSDoAL6K62btpF3bBsiHBnINPp7BrQeY3xegwK85Iz8aSO+n1Gu7BzkHSdym295i9nXZhJ1Q21SEpwoKYVcgFSYQQgojOXxMkzn6E3IqV494QlxQH1aziDiOh4lCQZGoxvXtHdv4iYpX2g6QP7sLtB1kQ9EkUSwdmBrucSLjek55NOfILYolJepq6SnvS86s3wEQs+U5ODXEcOYojMzeQFOGIZVYB51is6sfn9FRV1x0mN6Q4AcaxIiyIWQWUo3lr7xX0ydy1E/EDXlbHjEWQwC8rVb0iGCsChyNBhvR1Uz+WBuAdZ1eAxogc8vL2i1+dKsIRy6yCKLEzBMPCtY/PlSEoHaY4QyzDoSIsiFkF+yVUcTaGYLD8J2UxXQ91iZ0wKkHGZQjvGIEgYEGaBmAnhqAddl6PpU6GEY5YZhUoCeLEELzzMhombqv2HWFBzCoQilhx4Cmr8Y7YPBsxYXSCjNEQF8NIqAQsSNsAbN0Q1FNf27aPW3SEI5ZZBWqCZLsMEQpbpjhDrGUPki1HWBCzCsQiVmzfEGTa97GuctbSZZSCyBuP76xqX+HCF7qOQmBH9AhYkK4BWBqifw0Y88I2WdTtPk4H2hGOWGYVKAqSdBJ7huAL0jERSQF1hJggoJfFClmQbqLI4hiCT//BnoFmrd71SfLCcQSJCkOwW2IJhcOhA3REZXUSvPQoCt0jf5QasmOheQQilkDphAEIRShFLE8vXo1CvyCpIY4L22O5ruIpNcbjCAtiBNUME+WKBBIuGlA+6SycrMWCwDEOQ4Yo4rEkLIg6vSO/8ENu7gXuEFQiVqxjSM0R9c+EWsSan8/uAX2s8l+zv7iweI4yYxZEYsEQQoJoxCzJIEmoCZKocSL5dzO/aWfK/PwKCzKEzBB/U0UPule/WHbErw8m7WzbyRAyWztb+Z/twzyCDIQNWcZfSdLOtn/6WLx5TAwlcp4pho7Zj/4/C1JFfeRfhb2oHKmIFQ8yJNaRhFzEiuPpyj/nOqTMz5/lOcgSOusN1BBqgmhN1SvUJGn8hAgKMj8fnag8vn2MJ+lGBH9l0sGX4atLQvlDyjvbVG7IKpj96BILYkZuCOW1b4DZhSr9kaQqSDEH2U53ep2tPEfrDe3hRcQSgA0i5CKWwPhSrg2SrCrUtUm9cNQyggh4BFlCe71BDSIkBTE3RNBoCR1BoraIJWBBzNkJ/F5tMDeUaLKEwicmehoLAshXIpZ+r/JQYQiFFQ4NmCFxiyS4H1pU/KPyRK13tQrZiPVt9P04fiL6YeXBhSHD1zbNiCUANESA7UhlgaPSv92wICl9/eW/nozFKPKD6qM75oMIXUGgDREgDiXlBY4q3zphQVT5UmSsJUHKhgSYsywYIsFOXHkn41Nu4fhWyFEbQeK0E9GI1RawZYgAb2Ky6GN91zTRvQhBwIL0JY4vH3tSDCJ1QaqG6K9gwhErhp2q1+s2O2LJk6KwxS42ZkHkANIkSPpndvDKpS0IvCH1uu2a2DjxxmoPC1iQXh5Phtv/IzZl1Un7EE6cto/NmFWiQxPIz9Nu/xqzIF3kfShMRxwZIunSBOIztdy9AhbELOkUfUh/fRKPWAJQQ5TqdnoyUBRR2HbvYkHaKPUhzVXpgSCghujU7fZEf7JnvXMFLIgp5T5kKz/j4TJl1enxRPkjdtB97VfwVZClzT2hOYJrSEqfJ30ftIOuFbAg5klneYOo4rrzIWLFgIaYL2+/KE0ft5OexYJ0UttnoPIHzhNBwAyBW14VUYoPPeIb6BCgYa+aXgqgDIWU1YiKJS3dig81cU1TL1IY/72ArCE57YK0+tH7nnodMmBBoAZghRuPVx3xJWLFQIedOFneJj/49gdGgK03xdsqF5J4JAiIIY6Xd/FJsyBE6OxEvsct8jFLCxYEhb5O1DSJ9IagDGFB1IEc+fXuGYukydAFNo1ZdC77w4LoALretO+IiaDJ4AU2NISaIE030Nk/HUX5lYBYEBsMvZmZH6kL/jRDJFpuoCPuh1A8wIJYwexWTdQ9CcWQlhvoTOUtQrIrx7EgKdAjv3IfWhTu0MSCKEAnwDiua0DrHKThBjoxC7IM+HpTNWS5cKcmgKbAnQDjtO5wNG6gI+CIZR2jHNLnCXr8CiBl5Z2tdgOdhG2+iad9APqQiidIrnhuiDgOsf3i1dtRPidhQVKsjPwqMUv1/tMaKL0jyAkwA15FImJlR+lWBSnNQTZXisjFgqTYWW8KhmgW1jKlSxeABR5kCL4gi2PY20aQ7dLvLIhdLG4R1XdFY4BRwsOUVTnDo0WQWXnKzoJYxsk+g6GumFrjmSHL5z+1CML3KGzA4sjf3YvgC5vboq6OviFoEavh7EA+Fksdm+utsxdZ7zB2fdEeIHEESezw82DFg7fXJ5NXLy8qBBexBLSSCKww5TuktGqES+uZ5fTvD/Lo3ETw/MdFhSAFIWZIE2aKGLzatlOd113o7W7YF23YmrxwOX54cfLC58MaBIflkb/dEPKn3CoYAuEHNLLtZTuaFxj0oibggjxYl2PHo3Mn3ynaC1xCFdv9tNUQ8oIsgd3xVamNHT5eF+v65MXs++t5hTAjVgL1jAULth6rqyg9Cbrm1uQN+X0vEyVkQZgegAVBWQbg3ntwMYtWD9bzSYjCpe4Yxjk0BHlKgPQJYNVFKzy2umaF0QUpNvQ+BVtCGay6o1vgoD9o+xGL1xvX9bgwCxJO4bHV9VGQhq1YDOMx8PtBXq98Zxivsb8nnWE8BlqQg4uTU9VjsRjGY8B3cz9cPpqXYTwG/jiQh28nfryajR/LJ4e44k+/nExOItSVlLbgOePgo+SD/qtfuS4bP/zlBGEFPzqXbwKy3sHsHihVOznEER/JshOcedABQr7Mxu3Ja47rPlhH+aC38m2k9juYXUFqJ4e4YW9yMvlbmtRFCXrXJ84FSWd+B//uuqeKvwXuV/DB1iQXxH4HsyoI0iatZLXJnTHJn5c3XNZNEX9UXQuyl/0puO547xPKCv7TLya5IA7qWxWkfnKIEx6dy0aOLYSdMYmdf+d6DpL/RXBOtjvYaf1kgH7tj0XHst7BrAqCvVsdQ5AkHjufpBd/EVyDMYJcP/WbokM56GA2BWk6MMslGHsr95J45XxxRcE//u1kknQdtxRzEMd/AIuRy34HC1kQ14k8zpzEEOTtdCuW6xHzIN1e+JrzOVdogmBEgD2Ezbwy1DkXZC/to0lvdb3ED34hBTnleEdIXRBrHSzcEWRv/aTzmet1uf0KQ5B06NhyvhULR8zwRhD3glxHGD8erMuaCBEL6YPeQhIzEEEwt2K5Txux3AKZ4zRTFgnDcZZF+wsYyFYsvJNDDrYmpxBmPViCFB11z/EubWxBHHSwEPekyyMQEI+2d58ot4q/qG7/EiFHLO/3pGOdHHId92wU94Ikk+VXL6NMllEn6S46mN2DFXFODskO8ZwUh+w4BmGbxF52VK3r7XZ5qHQcoYs5h/0OZvm6oJWTQ1yxNxmdIMkHnSjyc/cnwPynOB/Eed3FpNx6B+ML5zJMBywIw3TAgjBMBywIw3TAgjBMBywIw3TAgjBMBywIw3TAghixf/rQJb3/iDejsxYb1MR2dCKO5+89VzyQ/iwfZnpgQYzwR5BpdKx4IP2ZBVGBBTHCC0EkdUEYFVgQI1iQ0GFBjFAV5MqPoyg6/PK1WApy5eloRf4cx/ffTP7j2Q9j+R8y8myL3juNTnyyFh25kL46ecnsTOkla1H0jHzJ8tMWb5C85JOns3dOstT8vLixa6pF/rOMWNlb/984/o+16PC/LBdgWBAjFAV5N7v1sOihm9FLxc/xdE3+vHI2XhbkL5P/OZoakfzPz9aKl8xKL1l+WlmQ4/JpohXdgqRvfWJTvumFpQIMC2KEmiDTaEX8bf5EdsCkJx79ME7+8J+VffHZP8Tzd7P/KAtSdPu4+pL909Fz1+L5b2XXX35aWZDo2LXsJV2T9OR5z11L3i1aeSW+f148XinAsCBGqAmS9dzkT/dZ8Yv8n23RtbezXruZ9umyICsX4tLr6y/Jen31aWVBjl7LH+oWRDwvEfWEfHy5AMOCGKE+Sf/60386E6WCnMifkBoTZz2zKkhpZKi+JFNitpY8o/FpmSDHip+7BTkh31m+q3i7agGGBTFCUZD7Z7JJyNliK5boiFm/zJ7dJUjxknQCkU8vugRZ/KwpSLkAw4IYoSaImPauPPOzD87XBMme1CBIeUNs5SVVQapPGyLI2bgiSLUAw4IYoSRI8kf52LV4MQdRGkFaBSnPOqwIUi7AsCBGKAmS97nkj/NiDjJb656DNPT8ykuy14ELUi3AsCBGaAkyjRbbjfKuW9qKlf4yP98kSPkl6bRDOlV9WvkNBgtSLcCwIEZoRCyxsyHb8yD2UESL/SBfvym31ib+yH0RTYIsdmokw9DRD+Psl+rTym/QIMiiv6c/twhSKcCwIEaUprRnk+6+iO+V/5imPxz9bdp10z3p8ujz8p70dPvRof/XJEj6khOll8jXV59WfoOaILPSLvf05xZBKgUYFsQINUHiK2ei6PAr+VTjbPLXeeWV9HmlY7HiefLzkQ+njZP05CWHi5eIQ6XkYVNLRx2W3qAmiDjWqhhD5M9tgpQLMCwIIPt/bWcDENIBwEzMgoCybWnPAQuCBwsCx/zvLe1BYEHwYEE8gAXBgwXxABYEDxaEYTpgQRimAxaEYTpgQRimAxaEYTpgQRimAxaEYTpgQRimAxaEYTr4XwmEiIjESjRzAAAAAElFTkSuQmCC</file>
</questiontext>
<generalfeedback format="html">
<text><![CDATA[<p>
<ol type = "a">
<li> True. At each of these points, the isocost lines are tangent to the isoquant so they minimize cost for that level of output </li>
<li> False. Costs and output each increase to the right. </li>
<li> True. Point e has less output because it is to the left of the y=4 isoquant, but the costs are higher since it is to the right of the cost=$36.80 isocost. </li>
<li> False. The production function exhibits constant returns to scale since </li>
<li> False. Point c is, in fact, a cost minimizing bundle for quantity y=6. You don’t have enough information to say that for sure, but it’s quite likely from the graph. </li>
</ol>
</p>]]></text>
</generalfeedback>
<penalty>0</penalty>
<defaultgrade>1</defaultgrade>
<shuffleanswers>false</shuffleanswers>
<single>false</single>
<answernumbering>abc</answernumbering>
<answer fraction="50" format="html">
<text><![CDATA[<p>
Points a and b are each cost minimizing points for the firm at different levels of output.
</p>]]></text>
<feedback format="html">
<text><![CDATA[<p>
True. At each of these points, the isocost lines are tangent to the isoquant so they minimize cost for that level of output
</p>]]></text>
</feedback>
</answer>
<answer fraction="-33.33333" format="html">
<text><![CDATA[<p>
Point d will have higher output and lower total cost than point c
</p>]]></text>
<feedback format="html">
<text><![CDATA[<p>
False. Costs and output each increase to the right.
</p>]]></text>
</feedback>
</answer>
<answer fraction="50" format="html">
<text><![CDATA[<p>
Point e has less output than point b, but a higher total cost.
</p>]]></text>
<feedback format="html">
<text><![CDATA[<p>
True. Point e has less output because it is to the left of the y=4 isoquant, but the costs are higher since it is to the right of the cost=$36.80 isocost.
</p>]]></text>
</feedback>
</answer>
<answer fraction="-33.33333" format="html">
<text><![CDATA[<p>
The production function exhibits increasing returns to scale.
</p>]]></text>
<feedback format="html">
<text><![CDATA[<p>
False. The production function exhibits constant returns to scale since
</p>]]></text>
</feedback>
</answer>
<answer fraction="-33.33333" format="html">
<text><![CDATA[<p>
It’s clear that Point c does not correspond to a cost-minimizing bundle of inputs.
</p>]]></text>
<feedback format="html">
<text><![CDATA[<p>
False. Point c is, in fact, a cost minimizing bundle for quantity y=6. You don’t have enough information to say that for sure, but it’s quite likely from the graph.
</p>]]></text>
</feedback>
</answer>
</question>
<question type="category">
<category>
<text>$course$/Quiz 2, A1/Exercise 2</text>
</category>
</question>
<question type="multichoice">
<name>
<text> Q2 : private_fall_quiz_2_q9 </text>
</name>
<questiontext format="html">
<text><![CDATA[<p>
<p>Looking at the following plot of market demand and cost curves, which of the following is/are true?</p>
<p><img src="@@PLUGINFILE@@/plot-1.png" /></p>
<p>Recall, AVC=Average Variable Cost, AC= Average Cost, MC= Marginal Cost.</p>
</p>]]></text>
<file name="plot-1.png" encoding="base64">iVBORw0KGgoAAAANSUhEUgAABLAAAAJYCAMAAABFOO8oAAACW1BMVEUAAAAAADoAAGYAAP8AOjoAOmYAOpAAOv8AZpAAZrYAZv8zMzM6AAA6AP86OgA6Ojo6OmY6ZmY6ZpA6ZrY6kLY6kNs6kP9NTU1NTW5NTY5Nbm5Nbo5NbqtNjshmAABmAP9mOgBmOjpmZgBmZjpmZmZmZpBmkJBmkLZmtrZmtttmtv9uTU1ubk1ubm5ubo5ujqtujshuq8huq+SOTU2OTW6Obk2Obm6Oq6uOq8iOq+SOyOSOyP+QOgCQOjqQOv+QZjqQZmaQZpCQkDqQkGaQkLaQkP+QtpCQtraQttuQtv+Q29uQ2/+ZmZmlKiqlKlSlKnmlVJ2leb+rbk2rbm6rjm6ryOSr5OSr5P+0Kiq0KlS0Knm0VFS0nd+2ZgC2Zjq2ZpC2Zv+2kDq2kGa2kJC2tma2tpC2tra2ttu227a229u22/+2/9u2///EKirEKlTEeXnEnZ3Ev//Ijk3Ijm7Iq27Iq47IyKvI5P/I///TVCrTv53T3//bkDrbkGbbkP/btmbbtpDbtrbbttvb27bb29vb2//b/7bb///heSrh353h///kq27kyI7kyKvk5Mjk/8jk///xnVTx/9/x////AAD/ADr/AGb/OgD/Ojr/Omb/OpD/ZgD/Zjr/Zmb/Zrb/kDr/kGb/kJD/kNv/pQD/pTr/pWb/tAD/tJD/tmb/tpD/trb/ttv/tv//v3n/xAD/xGb/xLb/yI7/0zr/05D/09v/25D/27b/29v/2///353/4Wb/4ZD/4f//5Kv/5Mj/5OT/8ZD/8f///7b//7///8j//9v//9///+T///91b5iuAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAgAElEQVR4nO2djZ9dxXnfr5AhJcjGxsVniV6MGycu3AQJJEGC1OA2aeMWbRJvBPQlIjFtnYaQvqwgwoli4xhXbtYCOVXs1m5MahlQW0xYBcmEZDd4ves9f1bPzJyXOfecOWeeeZ85z+/zkfbeu/e5z5l9nvmeeb+zHIVCoSLRzPcFoFAolKwQWCgUKhohsFAoVDRCYKFQqGiEwEKhUNEIgYVCoaIRAguFQkUjBBYKhYpGAmCdn5W66Zmdk7NbLri9KJRDnSmizAJMHt0qeM9Nz/S8vPObfa+iUPaEwJq6CKb2PFo82DoEBNaNu3sxhkLZ0ziw3F4PyrUIsGZ3Fg+u7wMCS9DuQqHsSQgsetMlYi2s4oV/dvfspv9waHbrCx+Y7bkn/6N9s5sf7TdGxaQCWLfTNjS9SRFgvXB38eCDJLhl1J+maCpaYDc9XeTDk0WL7MMXStIhslBOJQ8solv+66Gy5fUBzNZEVHDnQ/uKaO+cvOmfUGBdZREmCVBG/cIZNjRAXtpiGXDzMwgslAeNdQnvbYB1y9P5iyRd78y/UPziHvLSnW4vFmVBBXfuOVlE8vq+Wz5DgFXE++9dIP3DO/Mq6qTz97snSTLQfuDT5W+xS4hyLgCwSLoWwCqesP9Z1qIiVwGse88U8bw6u/N8NYb1pac+QB+WUSdo+gfs9lSEnvw4T1iFwEI5lzywqpmkW6v/EVhJiADraoGeM7N7GbB2HmGhv7UZGThT9RHZyHz5DIGFci7AoDsCK0mdKSJbhPIfHtrz6NWySzi7+Ze+dKgDLDoyf3WGwEJ5FAJr6iLAIpCivcIiriysW4vAIgNc99Kg39tYIrBQjuUaWDPcCxSYzrDGEmHV1fK/e/N60L0C1k3P1MOXtzaWXWDpxPeUuqkv2wgvOcbickJgBaXL7l1SYF2li0eLiNIW1i0XbpxcGMMq0MRIdoYswrtxiMuJlhBYKdv2mcqmLAIrRV12TywKoyKWRXwpsGj3sDPoXryHJUK5Dou8frVnHRYCK2XbHtPLsimLwEpRl6Xjb0wVjBi2ylnCmz9FFy60gFUG/MYj+2azO57O2Zr3m59ufxoCK2Xbrull6Yy1CyxrQmANyQOvDAuBlbJtx/QyAmvSQmBFZhvhJZssLoBXCKwEFT+vEFhJ2y6YQniFwEpQCKzYbCO8ZNPAcuCWFwIrHCXAKwRW0rZtUxCvEFjpCYEVnW2El2ysuDBeIbCSUwq8QmAlbcubggaw9NzyQmAFIwSWht8AavAEbDlTKK8QWKkpCV4hsJK2bUzBvEJgpSYEVtQ1eBK2tSmcVwisxJQGrxBYSdtWpgq8QmAlJgRWzDV4IralqQqvEFhpKRFeIbCStmWmSrwKDVjbx56Q84fA6pNSCriUi/hGW4MnY0tN1XgVFrAuPphl2X2PsSeb5Mnhc+zJ7ul58yRHYAkUOK/cxDfWGjwdW2KqyKuggHU2Y3qAPNmY08dL9I68fZQ+uev52h8Cq0eB88pRfCOtwROyPaXOq5CAtZ5l97987PFnaRLvrmQHzuWbxf+Xil+t8k+oPwRWV4F3CF3FN84aPCXbU+q8CglYa9lBOsaxSm7BG3N6u90+SrK79YT5Q2B1FTavnMVXnNJXrlxRttXxa9M0RttT6rwKCVir2YlmUHa9yO6c3ohPsFQnWmO9iRyB1afAeeUsvsKUvoLACsNWg1chAau6A1O1brok1YnKLM8RWH0KHViu4ovACtxWh1chAWtjnh15qUroeozjIHlcdhU25tUgBwKro9B5BYzvXmU/CKywbbV4FRKw8vU5nfVmObvL5pSOXOom9G1Ep4AqkhVqEpdIFiiYmQicjfju3Wv8L0SAlXgSRCDGK2sfL5mLZho8u8+RlF56mCbvcZrQ+8+1Erqa+Aa3sCTurnEr+AZWDovv3r2qbazBQfeRJMAWlm1bvfZVWC2snKyEfqhI5BOs/3CJ3IaLXDbRJURgBSH5+O5VJhYCK2BbXV6FB6wn8rNkOc5qOWG0mh1EYEkoDl4B4rtXmVgIrHBty/6ga7ddmQQW6Ri0c9jALBICKwjJx3evMrGGgTWcBQgsq7Zl+yoNYNEZ7v6ErtbnaKzTSRtYga9xp4LGV5lYAymNwPJqW/UH0wDW7kqRriSh1xa7DCZWQo/fXGNWDMACx1eVWAisQG3r8as0gNXsNSMdhPWsGZQlub5fd69Z8sDyfQ2jAsdXkVgIrDBtm/H2RIBV7+Y/Qp6s8Vv7N/V386cMrCh4pRBfNWIhsIK05eYHUwEWOy9pf3le0kv08KTyiKTN0+TwpEv1OxFYnGLoEFKB46tErBFgDWYBAsuWLb+eIRlg2TyRMnFg+b4GSUHjq0KsoZRGYHmyba2/kjG9DBTw6hFY/hQRr+DxVSAWAis82zZUJEzBKQ18f/hfQpEssKLpEELUxBdOLARWcLYLjSAZYIGvB2YRB7CSJFaKvOLjCybWGLCGsgCBZcN2sdOGwJJRosBKklet+EKJNVgdEFjubTuDTAgsGSGwIlIrvkBiIbDCsu0OiiOwZJQmsNLk1UJ8YcRCYAVl2zOJh8CSEQIrIi3EF0SsUWANpAECy7Rt36IDWWBdv/x18mPr8jfJj1eKz/mzd8ijnW+8Ub1vi72SI7DiUKK86sQXQqzh6oDAcmrbu0hKHlgUR9cJsHa+Qaj1ymWCqle+3bzx6jd5C2lFAqzkiLWQDZZX27lTJ74AYiGwwrHtTzN5YP35d4ofr/x5AaVvMTC98k2+VZVzra3kgJViE6vDK6i50asxqG585YmFwArGVnBblAfW/yVtq//xF98suoV1L5BCq3jh8p/9H0KuqomFwIpAi8AC2xu8FqPqia80scaBJU4DBJZJW1EzXh5Y/+9/Fv9/s2DS9aZVtfON7xBefbv4R16sfoPACl+6vIoKWLkZYA2nAQLLoK1w2EEeWG+88kZ+9TsEWF+vf0UbW1fJ86uEVVXbC4EVvqYFLFliIbACsRUOkwKAdfXb+bfeaLewKKFot5C+SBtcOQIrAi3mQ+rAkiQWAisMW/G0DgBYW9/c+joZpqraUVt/9s6kgJUUsaYJrFFiSQBLmAYILGO2A9PQAGDl/+svvk3H1V8pZwm/Pp0uYWpNrE5C2F5s51CC+EoRa6w6ILBc2A6tm4EA65XL36HA4tZhfes75Gn6g+6JAaubELYX2zmUKL4yxEJgBWA7uM4PAizCI5av36puvvTpzjcuX/7f5OkryS5rSBBYC6+Q/ywutnMoYXwliIXA8m87vC5Zcy9hncsEZgkvHE0LWD0JYXuxnUOJ4ztOLASWd9uRfRS6m5+r3kLT+hqz6AiB5Vh9GWF7sZ1DDcR3lFgywBLlAQLLhO3Yvi9dYFWtqiKNE978nB6wOq+R/ywutnOoofiOEWu0OiCw7NqO7lOVWiQPvJzkznTPk1rX0JsRthfbOdRgfEeIhcDyazu+r15+G6K8gFcfBbASamINAsvWYjuHGo7vMLEQWF5tJfjh65I5IbCcqj8lbC+2c6iR+O4dQpYUsAR5gMDStZVp7yCwJDUVYFlabOdQY/EdItZ4SiOwrNlK9c8QWJJKBViCnLC92M6hRuM7QCwElj9bufEkBJakpgAsgUwstnMoifgKiYXA8mYrOf6NwJJUIsASJYXtxXYOJRNfEbEQWL5sZefrEFiSSmRdgzArhnLFwGI7h5KKr4BYcsDqzwMEloat9PoCBJaskgCWOCuSPiK5R/3EkkhpBJYFW/n1UAgsWSUOrIS/NadfvcRCYHmxBWQUAktWKQAraNCYkmx8+4iFwPJhC7kDIrBkhcCKRNLx7SGWJLB6EwGBpWgLarEjsGSVALAmwStAfLvEkklpBJZZW9gIAwJLVgisSASILwLLvy1wRBSBJav41zVMg1eg+C4SSxZYfYmAwFKxhc7gILCkFTuwwp7bMydQfBeIJZXSCCxztuAZZwSWtCIH1lR4pQCshlgILLe28BUyCCxpIbDiECy+bWJJA6snExBYYFuFFX0ILGnFDazAV3saFDC+LWLJpTQCy4ytSk4isKQVNbCmwytwfHliIbAc2irlJAJLWlFPE06HV/D4csRCYLmzVbuHJgSs7WNPyPlTdRgxsFLglb34NsSSB1Y3ExBYIFvFNn8ywLr4YJZl9z1WPNpdySrd9Tx5fnqeZYfPNf4mCizf16Anq/GtiSWZ0ggsbVvVMYpUgHW2TOEHOgm9fbTJbeZvesCKn1eW41sRC4HlyFZ5TDURYK1n2f0vH3v82Wyp6TZszOmT1ezAuXxzJTtwqfKHwIpO1uNbEgsArE4qILDkbdXngBIB1lp2kI5xrJJbMFNxIyaPN+b03rt9tE716QErel45iC8jlmxKI7C0bDXmrBMB1mp2YnFQdo3dc0mqs6dVqiOw4pOD+I59i31LCCwdW501NokAq7oDN9o+WuR4zlKdaL1MbE1gxUis+HnlJL4QYvWlAgJLUlprAhMB1sY8O/JSK6HLO+/uStlV2JhXgxzKwIq1iZUAsJzEF0qshZcQWHLSW8OcCLDy9Tmd9a4GXusxjcWEvo3olKJIlqra+hNJDzufbCJwIcW3HMeSUZypEIIYr3xfRa8kc9HMOqzd50hKLz1cJXg5a8QldDXxPbUWVgINrNxNfAFtrJ4+IbawZKS7RyyVFlZOVkI/dDwrRzR2V+oHU+8SpsGr3EV8ocRqv4LAklDZvnLtVt+Wk8mtOWfLG299v0VgJQQs2/EtUlqaWAgsFaOyfRVhcTmZBFaVyM2ckcFZwiinCZPhlYP4kpSWJVY3FxBYo6r6gxEWl5MBYNEhWD6hmwWG1focA+uwomxiJQEsV/ElKQ0h1qKtjl8Ppq5t6/GrCIvLyQCw6KpnktDlasK6o2B0pXuMwEqCV87iS1NaklgILKia8fYIi8vJ6F5C1kHYPlrvhS1yfb+hvYQRAiuFY2WIHMWXpbQcsTp9QgTWsLj5wQiLy8noaQ1H6LNmBDbPN42d1hDhIFYivHIV3zKl5YnVtdXx69rUqS2/niHC4nIyeB7W/sfYk/Xmfltk9OniN4eb5zoJHRmwkuGVq/iWKS1FLAQWSHxjP8LicormxNE8NmCl0iFkchHfKqVliLXY3EZgDamVixEWlxMCy5aS4pVTYEkTq89Wx69TU4e27XtnhMXlFMuXUBBFBay0eCUtI8CSIdZCEwuBJdZlBJaGP01gRUMsBBZYXEpLEqvXVsevQ1NntosbCCMsLqeYgBVTE2uivDIFLAliIbDk1NnwHGFxOSGw7AiBBVcrpUeJ1W5vI7AE6h7QEGFxOSGwrGiqvDIHLDliCWx1/LoydWPbc6BMhMXlFB2w4iAWAktBCyk9RiwE1rj6DsCKsLicogJWNE2syfLKJLDGiNW6fSGw+tR7YF+ExeWEwLIhBJaKOikNaGIhsHrUf8BohMXlhMCyoOnyyiywRoiFwBqW4EDkCIvLKT5gRUAsBJaSelJ6kFh8NiCwOhId4B5hcTnFBaw4mlgT5pUVYA0SS2yr49eBqW1b4RdORFhcTggs80JgqakvpQeJhcASS8irGIvLCYFlXFPmlXFgDRKL6xMisNoS8yrG4nJCYJlWWsfKQGUcWKPEGrLV8Wvb1KrtAK9iLC6nCIEVOLEmzSsLwBoiVpMOCCxeQ7yKsbicIgNW+E2safPKBrDGiDVoq+PXrqlF20FexVhcTggss5p2h9AOsAaIhcDq0TCvYiwuJwSWUU2dV3aAJSZW3SdEYNUa4VWMxeUUI7ACJtbUeWUJWMPEGrHV8WvR1JbtGK9iLC6n2IAVdhNr8g0sW8ASEguBtaBRXsVYXE4ILJOaPK+sAUtErKrFjcBiGudVjMXlhMAyKQSWNWAJiIXAakuijR9hcTkhsAwKeWURWMPEQmBRyYxJRFhcTlECK1RiIbBsAqufWAgsTlJjqBEWl1N0wAq4iYW8sgusIWIhsHKpASw9v1KmV2ACXgICy5wQWJaB1UssBFYlOV7ZLi6wdkIrMwLLmJBXuW1gCYmFwJLmlXVgAT9zEsAKklgIrNw6sPqIRRMCgSXLKwQWzJ++w0CBhbwisg2sHmIhsIikeYXAgvlLFVi4yJ3KOrBExFJ3mwSw5HmFwIL5SxRYgIRJWvaB1SUWAguUfggskL80gYW8KuUAWMaJFT+wQOnnCFjXrrxdPbhy5bs/II92Xvvb6l1b7JV8KsAKjVjIq1IugNUh1sSBdRl2u3QDrJ3X/vJV9vP1nECLoOraW83b3n29/X5ZRQisAJtYyKtKToDVSywXfk2aGrMF8soRsN599T0KqTcZmK69zreqcq61hcDyIORVJTfAWiSWXhMrbmBBeeUIWG++vvNa0aDaulL3Aim0iheufPdvCLmqJhYCy72QV7UcAauPWE78mjM1ZAsfPXUCrK0rb+fXij7he02raue1t8nrbxX/yIvVbyYCrKCIhcCq5QpYJokVM7AUZnucAOtdAquidfXeq/UvaGOLvJ6/S1hVtb0mAKzQmljIq0bOgLVArIkCS2V22gmw3nyLNKne4ltYlFC0W0hfpA2uHIHlQQisRu6A1SbWKY2ciBdYSqtpXABri53E8Grdjtr67g8mDqxwiIW84uQQWC1iTRJYaqv/XADrGu0Jkj7htXKW8NUpdwnDamIhsDi5BBZPrFMaORErsBRXKzsAFp0gZD+4dVhvvs1eCmLQffvYE3L+kgPWNHjlIr7wmtQQa4LAUt1d4QBY75Wtp2sESm9WK93pQoad165c+Svy9JrPZQ0XH8yy7L7H2JPds/Ms+4mHyyeniyeHzzX+jAErFGJNAVhu4qtQkzhgqRMrTmAp7wbztpewXjhKGldeF46ezZgeIE82j7InR8iTbfbkrudrf2YIGQ6wpsArR/FVqUkVsSYHLPXdq/42P1dbcwiwfG7NWc+y+18+9viz2VLRbdhdyfafy3fZk3w1O3Au31zJDlyq/CGwopOr+CrVpJJYxFY1KeIFlmu/msCqWlUFsOrWlo8jkteyg3SMY5XcgtfL2y15Md+Y0yfbR5eqERCDwAqCWBPglbP4qgNrbw0slaSIEVgau1dtFxcUAy9fQrGanagHZYsb8InmNzSr6c8HKn+GRvkRWO7kKr5qNYkRa2LA0tltb724fd+NIxL4Eky2sIi2jzbjGSzVidbLxE4OWFPglbP4KtakZqpQkVjxAUvr+LX4isvLBD825tmRl8qE3pgfuPTVn8my/WRKaXdlqXm19GcQWP6JNY1jZVzFVzWla2JNBVh6x0VGV9yWjPBjfU5nvUnOFql7up5SWkzo24hOmRHJTUMfpS6SN758mwhcwPGFqOwVsqTwnxW2xXjl+ypMSzIXzTR4dp8jKb30MJ1Ryo5cynfPklkkLqGrjoSpFlYIfcJptK+I3MRXncFVG0utiRVZk0P3OO7IirsgcyvdHzqeZSdIQrPx19XsoM0uYQh9wukAy018NVJai1hx1WBdXkVW3EWZ3JpzNjtwaWPO5bBNYAXQxJoQr5zEVyelS2KlD6yyP+jcr65piMAiHYO6c0Af2JslDABYU+KVk/hqVQcNYsVUg8v2FQJLQ3TZYJXQ9U13nax+rtbnmF+HhcByJmfx1asOjFiJA6vqDyKwNLS7UqQrSeg1ksOr5c2WLou2ttI99z+INRVeuYuvZnVoiOXOr+MaXI9fIbB0VO81Ix2EjTnZvM9mkcqNZxb2EhJNGlguS+4qvrrVQZVY0dTgZrw9MWABQmb0tAa6gZ8u2smyJTq6sWnptAYiv8DyyivHJXcUX+3qUBPLmV+n4ODmB1MCFmyPjsHzsPaX5yVtkiOS7jtXPSl+c/hS/U7DwPJHLI/AUtyFpSE38dWvDmrECq0GC8SvZ0gIWMBdhXGeOMrkE1jeeeW45GGeONqxVSJWYDVYoNb6q2SABd4GjcBSkz9g+cBVNMCqieXIrztwtNeLJgIshUMb4vwSCiaPfcKp8UpavoGlQqyAarBQC+vbUwCW2hEzMQPLYxPLF7C8dAch8g4sBWKFUoMHtLgfJ3pggbuClRBYKkJeieQfWBWxnPh1BI7O/sG4gXVFGVcJAMtL7fUDrPBxFQSwwMTyX4NH1N3vHC+wrrQE/5iogeWrieWTV+79ghQCsKDECh1YPeczxAosTVrlCCwVeTlWJobmVR4IsIDEChxYfefJRAksfVrlCCwVueeVbpTdKQxgwYgVNrB6z7+KEFgmaJXHDiwvxHLOKxNxdqVAgMV9M4VVv66A5cGvUVNDtMoRWHA57xBGhKtwgAUhVtDA6k+3qIBlpCtYKXJgeSAW8mpIwQALQKyQgSW4PcYDLKO0yhFYYHnilUuXOgoHWPLEChhYogPcowGWWVrl8QPLObG8AMulQz0FBCxpYoULLOEXTkQCLJ5WOpfMCYEFk2NexdW8ysMCliyxggWWkFdxAKvdtkJglXJbo10CK67RK6aggCVJrFCBJeZVBMDq9AQRWKWc1mmHvIppMUOjsIB1RYpYgQJrgFehA6tv4AqBVSpxYDnyZkphAUuOWGECa4hXQQNLMM6OwKrksF6741WUzas8OGBJEStIYA3yKlhgtRYxtJMXgVUpRWBFiqvwgCVDrBCBNcyrQIElppWeW14JAMvZsLuzNe7R4ipEYI0TKzxgXR7hVYjAGqSVnlteqQDLRe12A6xYO4NMwQFLgljBAWuUV+EBa4RWem55IbDk5YJXcc4NNgoPWOPECg1Y47wKDFjjtNJzyysFYDnqE7psX1n3Y0sBAmuUWIEBaxxXQQFrrCtowC0vBJasXHQII29e5aEC60pEwJLhVSjAGpgUNOmWVxLAckIsd7yy7MWqQgTWGLGCApYUr8IAFoBWem55IbAkZZ9XCeAqUGCNECs8YHnwCzWF0UrPLa80gGWfWLY7hPF3BpnCBNbwMFZIwJLMM9/AgtJKzy0vBJac7PIq9rnBRoECa5BYAQFL9r7oFVgKtNJzyysRYNkmlpv2lUUPrhQqsIaIFQ6w5AawzPsFmIK7ggbc8koJWBYrvFVgJdO8yvn4LheC2VoGVkmsLrKCAZY0rzwBCzIpaNBtS6kAy24TywWvrH2+U3HxBRPLbi0UEysUYMnzyguwdGil4XZByQDLKrEsAispXIUMLDGxAgEWgFfugaVJK1W3XXkBFry3ICGL9d4ar1LqDDIFDCz61+4jVhjAgvDKNbC0aaXmtk9+WljWiGX8Q6ksASuducFGIQNLRKwggAXilVNgmaCVgluBEgKWNWLZamClh6vAgSUgVgjAgvHKHbDaXUFPk5O8UgOWjepvB1gJNq/y0IHVT6wAgAXklSNydAauEFhmZaf+W+WV+Q/2q8CB1Uss/8CC8soV2xe7gggsw7KCABvAShRX4QOrj1jegQXmlZP5iZ6BKwSWYdmAgHlepdkZZAoeWD3E8g0sOK/sbrsU0MquW1mlBSwbxDINrP5UuAKSyesxq/CB1SWWZ2Ap8Mran2okzxBYpmW+OhtvYPXmAuyiAyZWBMBqiKXv18Alq/DKzp9q/K6IwDKu0IElyAbgNSOwtGwXiOUVWEq8svCnkmrDJwSs7WNPyPmzDCzTxDLKK2E6QK/YPbBg8aUKF1gLxPIJLDVeGf5TSY83JAOsiw9mWXbfY/Tx9tGM6q7nybPd0/MsO3yu8TdhYIkzInRgQeNLFTCwmn2Fmn51L1mRV0b/VIDR0VSAdZalcPYAebIx5xK6zG6W3NSfbWCZJZZBXg2lRODAAseXKmRgtYjlD1iqvDL3p4LN5SQCrPUsu//lY48/my09QZ8dbH61mh04l2+uZAcuVf6cAMtYhTYFrJGkCBtY8PhSBQ0snljegKXMKyN/KqlRK/NuNWUCWGtFCpMxjlV6C2b/M23My/vwUjUCYh9YJolliFejSVH94tqVt6sHV6589wfk0c5rf1u9a4u9krsGFjy+VGEDizuD1Bew1Hml/6dSoJUJt/oyAazV7EQzKLu7stQMz66Vd+O1OsldActIlTb1zROjWVH+aue1v3yV/Xw9J9AiqLr2VvO2d19vv9+R4PFlgkbZeXUoieUJWBq80vtTXVmUG7catpxMtrCoto8e+P3jWXYfHYclqU7UdCMcAMsYsXQyqnM5gxdU/u7dV9+jkHqTgena63yrKudaW35aWFRS8WUKHlg5N/Lu0i2VVnZp+FWmlZ7bkIC1Mc+OvFQldDUmS1K5vhtvzKtBDhfAMkUsA7ySzIvyt2++vvNa0aDaulL3Aim0iheufPdvCLmqJpZbYMHjyxQ+sPJck1i6wHLtVxlVem51bTkZmSVcn9NZb5qz61l25FL+d6fJCO1iQt9GdKoQSeVTFsUCovkhNKMMXIbEpbDc2brydn6t6BO+17Sqdl57m7z+VvGPvFj9hnyeicDZii+T7SgbESOWbq7ApZ9dQC00rFy6lpJkLppZh7X7HEnppYfzZliDjM1yCV1NfDtpYZlpY+m2rwC3MvaOdwmsitbVe6/Wv6CNLfJ6/i5hVdX2cr0OCxpfphhaWFUbS/EvquxWs/WusIpDr22l5taULSdzK90fOp6VIxpU69mBS766hLmJqULt/iAgPdhb3nyLNKne4ltYlFC0W0hfpA2u3D2woPFligNYFbGU/qaqbnWHR6FbJ43gKjFgPZGfbZbjsJuuR2DpE0sTWKDsoO/aYgav1u2ore/+ICBgQeLLFAmwamK5G9TRns6BnabTppXv03T0ZBJYTccgL3PYzywhkyaxdDIKfDOj77tGe4KkT3itnCV8NZQuITS+TLEA61RNLPDfVc0t45WD4vY2rCYPLLpssEro3RU+h6v1OU7XYZXSbP+qA0uh7U3eSScI2Q9uHdabb7OXFgbd1a5MTQrxZYoGWE0bC5ovSm7L9pXd4oq7gdMC1o2nfvL2Qh/6pS/XLxU5/ABN6LWM3nQPli+e8LTSvZIWsZR5pTRUQN77Xtl6upef2OUAACAASURBVEag9OaVcqU7Xciw89qVK39Fnl6zvqzBTHyZ4gEWTyzrC5Oq/qDF4g4OWk0IWDtP7ZvV2nPPhfLleq8Zy2Ey7b15nI53FGm93/VewkY6xFIEljBLRsyEv6kXjpLGVbNw1M5fz1h8mSICVotYgNApuK3Hr2wVtztqJW+r4VbHFpAoAGDRdP7gT3/2xUKf/cUPFCn9iTKlq938R8iTtXIzP10KvSnYze+GWOqrG1R4NZQkY6biX1Vbcwiw6q05Vv56JuNbXWU0wMp5YMnHD+62GW+3UNxFVpk+NtROhJYhiSIPrBt3z27+FP/CC8ULT7OH9Lyk/ey8pHyzeLJ0pLzlbp4ufnO4mVxyCyxlYsGBpYGrfIhYVauqAFbd2gJFWFZG41tfJuQKvAJrgViSMQS75eYHjRZXClUCWw23BmyXS0l+jDSwtg5V2dvoxt03PVM+BJ5I6QpYisQC80oPV8BT2kEBlpXZ+FLFBSxGLMjqOQW3/HoGc8UF0ErPb0zA2vnjvlf/uBrnCBVYSsSCrpLRpNXCR4zJCq8Mx5cqRmDtBS34hbptrb8yVFwYrfT8mo8QEFe+voTCIbAUht5BvNJtW4Flh1emFDGwmo3Q8gGFuW2vF9W/ZDCrdP2ajhAYV1MAFpxYAGB5wlWwvIoaWPzRDZJRBbldWN+uc8lqqNL2azRCywq4ggNr54WP3X777Xd8CmjW+HMPLGi3UH7fhHNc2eeVofgyAS/VO7BKYi0gy9TXyCzmleIRXn0CfUIYwFLDFRhYV6uFOjc/CnRU+fMBLNA+HWleOaeVA16Zii9TdMBqEUsmwAC3nbxSuGR9Wqn5NWDatlXFFRRY1/fNbv7lF1988akPzOr5I6A/j8CSi64crzzQysHwlbH4MsUHLCGxBGGWdnu5ex/UPCJGOfX8A2tZnVdAYJ2Z3cqmjXaKR3BnuTdgyRNLglf6OaMm+8NXxuLLFCGwFs8gHSGErNseXkEu2RCqwH4Nmja2OrgCAmvr0J6qp3B9n9ot2BewpPf4jfHKWN6AZZ9X5uLLFCWwOqcmD6FC0m0fr+RsBajy9Kcy4FYPV2Bg1VnMPYT58wUsyV7cMK/80Sq3tL69JXPxZYoTWD3nvAuZJee2f1hUbNul1KLnWIGliyt4l/De8tH1fbdcGHyryJ8/YBGN4kYMrKEbrQM5Wc5gLL5MkQKr95sp+uEh5VYwjdNnK0ZVO+WiBNayPq6gwLpR9Rlu3L1HbRrJM7DGliL0ZtZQ5jiSo+VXxuLLFCuwhN+lMwgRkUTTzmPba4bcRAgsI7iCHi/zyZ+czT74ic/+2+LHzR8n+inobdg7sIa7de3UksodF3LEK3PxZYoWWAPf/gWgSinRNM4pqQ1Z0pcsLS/AMoQr8BjWbEHggQ7/wMoH8oSmFjx9bMsNrkzGlyleYA1+X6EEZrhsobySNpFMs8iAZQxX4BbWxxcUYQurFDCFZLLIkhw1r3KT8WWKGFjj37AKTyCDSRYVsMzRKp/EXkKhgkcVlTtemVAywMqlvhLaPaqGLtm6rYqpUVxNG1j5aML5vrw8Nl4lBCwpYvGm1ik1fsm2beGmDa50LpmT/AF+/7hzvlvRh/jNKMewBLqsmUU25AxXZuPLFDewZIg16HaETKEV14pp07pyDaydk/UR3/VLT8IX6wQNLOVv9rImd80rs/FlSgFYw8Qadju8jz604low5TuDroGV73xmNrvjd5rnL3xsNvsweHFhwMCaNK8Mx5cpcmBJEGvQ7ci5H8EV17Rpe+zKObDy/MYjs9nsfR8is0c/SY4huaOnEzHqD4ElL8fDVwbjyxQ7sMaJNeR27Jyi8Ipr0rQz1O4BWHn+/SfrL67b8+Evj7+/x1+wwJo8r3KD8WWKHlijxBowHT1XLcDiGjPtmRn0AqxC3//sUx//+C/9tlI25wEDC/rFE/blZ3rQTHxLwQoQYg0eIZbYdPwcyBCLa8a0dyGDL2Dp+gsZWL6vgVdkyxkqpQasEWIJTSXOrQ2yuAZMBQuv4gZWcMRCXplRcsAaJpbIVOac7TCLq2sqwBUCy6xC6xDGyqsEgTVILIGp1PcCBFpcLVMhrhBYZhUkr3xfhYoSBNYQsfpN5b7HJNTiqpsO4AqBZVTIK1NKEVgDxOo1lfzepWCLq2a6PIgrBJZRhQWsiHmVJrDExOozlf2euHCLq2A6hisElkkhr4wpTWAJidVjKsurkIsLNR3HFQLLpIICVtS8ShVYImJ1TaV5FXRxQaYyuPIHrBceuf2Dz/Ru7ZfzFyCwkFecDMWXKR1gCYjVMZXnVdjFlTeVopWeW15AYF2/m56bu3VodqeiPwTWoDzzylh8mRICVj+xFk0BvAq8uJKmsrjyBKwike/494dueobs7L93/O19/sIDVkC8koy9NZmLL1NKwOol1oIphFehF1fGVB5XnoBFvsCcfcXmec2vMkdgdSUffFsyF1+mpIDVR6y2KYhXwRdXwhSSsT6AtXNyz6NlQut+lXk4wAqNVx6vwGB8mdICVg+xWqYwXoVf3DFT2A3WB7BoLrOE1v0qcwTWorzjymh8mRIDVpdYXWDZcBuMLW8K7Q/4AVZ6LSzkVSOD8WVKDVgdYvGm0P2oERRXaAoYuzLglhd0DOtOltA7Z1IZwwoEWCHwymR8mZID1iKxOFPw/vkYittvqoArT8C6vm/24S8duul3v3T3rLgXK/kLDFjIK17m4lsKVKooanCbWI0pcAAL6jYMW2qqhCtv67CqI3T3qM16hwasMI6V8T/cXslYfEulB6w2sWpTOK8iKe6iKWQlgym3vKAr3Xeeup18U8EndI/QDaSCIq8WZCq+pRIEVotYlakCr2IpLq9lZVzhXkIjQl6Z1gSAxROrNFXhVTTFbaSBq+CAtX3sCTl/IQEriA5hHLiCxrdUksDiiMVMlXgVT3FLaeHKM7B2Xmw/v/hglmX3Pda8sDE/cIk+2D09z7LD5xp/AQELeSWSfnxLpQmshljUVI1XERWXSI9Wym47AgLrxj+iy3Pogp1GZzOmB6oXdlcyltDbR+kv7nq+9hcYsHxfQ2C8MhbfUokCqyYWMVXkVUzFlabVspoAlwJe1lAmND/tvZ5l97987PFns6Wq27CWlQm9mh04l29W6Z0HBawQGliB8cpcfEulCqyKWKfUeRVPcRuujJkqZjKkBkAXjt5ygT3iN8euZQfpGMdqdQvemJcJvTGn997to3WqBwYsz5cQGK8MxrdUssAqiXVKnVexFJdvBo2YKqeyLWBxPQV+r9lqdqI1KFt0GB5iYxwk1XP6s+pNILA4hcYrg/EtlS6wSmKp8yqO4ra7bWPAUr0ke8Cqs5hP6OoOXGk1O1gOypJUJ1ovE5sk9F6UoiChUpKR+LY+MWFgccRy6tal7eIoU2zA2jlZH+t2te480B7CkZeahF4vugssoXdXyq5CPamEwNIQJFRKMhLf1iemDCxGLPVmevDF7Q6KxwasIo1nf5+sgf7+U/v4EynX53TWm+UsHdDoT+jbiDzX+oh1qiVQ4BzGt3WRJNtPJSsalcu+r8KSGlzJm6jmHXEh+VbgsoYnZ5VaZ37vPkdSeulh8pgOzXYSupr4xhaWumChUpKB+LY+L+kW1uXLWmEJurj9Sw4kW1hfW/6NPP/R5z7NnnyavrK8/Ct/SJ7+6HP/pXr7D//jHy4YSgi6cPTGI2R77J47Fr9VZfvYQ8czMqKxRuePxrsMnoeb/Y64hzba3shYfJlSBtblEliqxAq4uKIVUnLA+tHn/tOv/kkBKfIfBdSPPvdr/51Ai6Dqa59u3v898jJnKCOTW3PO0sENmsMIrCGFyyuhwPFlShhYdHpQh1gBF1e0oFMOWN/71f/2Lws2/fW/Ig2ov/7Xf5J/hYHpa8WPplWVc60tT8AiHYO1rFbRSxiYRfJbZZFXQIHjy5QusNh6hlMaxAq2uCJcyQLrK7/2p7Q7+JWiY0haVD/8vboXSKFVvLD8K39AcFY1sWwAa+eTP3Vh55Mfb/RT1SwSHYXtT+hqfU7POh2vddbrIvcweWU6vqUgRQ22BveoXH91Svgl9nbcOrAV40oSWD/8vd9g3UGCI9KIYk0tqh997jfIGwjEyJBW9RsbwCILc7YOzRrV63R2V4p0JQm91uzQKPsIAyuhfVZajdV+2hpIB68yHd9SiQKryqBTwi+xt+LWuq1g7ErSLbP6XgGrvyZ9QtL9Iz1C8q8UbWx9j9KMAKtqe1lpYX3xty/sfPGzjX67XqdT7zUrOwh5ndBFru8X7DXzWGuRVz0yHd9SaQKrziBiqkqs0IrbjLQLIyYFrK98upoiLPqEZIyda2FRQtFuIX2RNrhy92NY1W7+I/Ur1SjspnA3v29g+XEdLK8GpRLfUkkCq7njUVNFYoVVXAlcyQHrh79HP4T1Cf+UDKtX7aiixeUaWE/e0X90Lj0vaX/feUmbp4vfHL5U/yIAYHnnlR/fMjIY31IpAotroTNTNWKFVNxlKV5JAYutZij7hH9Ae4NfK2cJf/VPHHYJiQa+XRN8IqVfYPnxHDqvTMa3VILA4kcUSlMlYoVTXDlajbsl1uV60bJP+G/KJ/U6rK+US0rtD7oTJQEs5JVQCCwJtUZAK1MVYoVTXDlajbslH0CbVoW+RoD0veVyQcNXlsuV7nQhw48+t7z8nwmrvmZxWQPV+dmtF8bfNehvusAKnldG41sqOWC1Z2xqUwVihVJcaVyZ2PxcLxwljSvrC0d3vvjIbHb74jodkLwDC3kllsn4lkoNWAszzI0pnFhhFBeAKyOnNVRbcwiwrG/N6V+nA9JkgRUBr4zGt1RiwFpcEcOZgokVQHElh65k3cp8TtWqKoBlf/OzYJ0ORL6B5YlXcSxnMBnfUmkBq7OCjzeFEst7caG4Gncb3Jnu+poksMCJEa+SBlZ3xXHLFEgsz8WF4wqwDREowCWAgPV9xdsu788vsJBXQzIZ31IpAatnh0TbFEYsr8VVgoW3S+YEANaNu8nQxi2LJyUB/U0PWLHwymx8SyUErL4dXQumIGJ5LK4ariID1vV9s9kHP6Y6GFv78wosj7xy7RYsw/EtlQ6wenegLppCiOWtuKq4igxY7Dvrdk62D88F+5sasMYzw36/X0qG41sqGWD175jvmAKI5am4OhkUE7B2TrLvrOO/TkXFn09gBcorV9cyKNPxLZUKsAQnfHRN5Ynlo7iaN7yYgFVt2xjYviHlb1rAksiNMHhlPL6lEgGW6ESiHlNpYrkvrnb7HIHlVEHyKnFgQeIcLrCEJ6j1mcoSy3VxDQwnILBcyv2xMlLZgcCqFCywxCc+9ppKEsttcY2Mfk4ZWM6J5f6cUbn0QGBVChVYA5nTbypHLJfF5Wml4ReB5VCueSV7O0NgVQoUWEN3OoGpFLHcFbfduEJggfz5AlaovKqABf62XMNCYAk02DIXmcoQy1VxF/uCkwHWrC3d3fwegOXQnfxwAXsP/NtyDct4fEvFDqzhkQShqQSxXAPLgF8EljN54ZXcW+n/8G/LNSwEVq9GRj7FpuPEclPc7kj7RICVf//Ftvq/rmDU3ySABZmNKb8bCfxtuaZlOr6l4gbW2EzNgOkosVwUt29icCrAMuTPD7DC5VX13Ujgb8sNU2kBa3RmecjtGLGsF1ewjgGBBfKXPrCAq13oGxW+LTdMJQgsZbcjxLJa3IFlVwgskD8vwHLIK1GaiA3IfwrflhumOsACxDk4YI3PLA+7HSaWxeIO4AqBBfSXOLDAvKLAUvm23DCVErAkVsKMuB0klrXiLg/yCoEF8+cDWCHzigJL5dtyw1RCwJLZGjHmdohYloo7TCs9vwgsN3IGLDiuKLCUvi03TKUDLKmtXKNuB4hlGVgqthpurdpymgKwHPMKaqT4bblhKhlgyW09HXcrJpaV4ko08RFYIH8JA0uJVxJ7Cfu/LTdMpQIsya3yEm6FxLJQXKkRCQQWyJ97YIXNK5nNz73flhumEgGW7NEeMm5FxDJd3JGhKxN+EVgu5AhYirySAVbvt+WGqTSAJX0UkZRbJ8CSxRUCC+ivceiIWIHzSvVQ90BOpVlUEsCSPzpNzm0/sUxesjyuEFhAf4kCS51Xql+bY/b6TSkFYAGOepR020ssc5cMSwoEFsifa2A54VXQDHGqLrDk4xwIsCBH00KAtUgsU5cMvYchsED+UgQW8qpW/MACHaUt67aPWGYuGd7kRmCB/DkGFvLKraIHFuzof2m3PcQycckqIwQILJC/VIFl20kkih1YMF4B3HaJpX3JigOaCCyQP7fAcsArbF7xihxYQF5B3HaIpXnJyvMvCCyQP6fAsv/NE9gdbCtuYEF5BXK7SCytS9aYLkZggfw5B5ZVB8irBUUNLDCvYG4XiKVxyRq4QmAB/bkEliNeWXURmWIGFpxXQLdtYilfsg6tdPwisCzXddsdQmxedRUxsBR4BXXbIpbiJWviCoEF9OcOWMgrD4oXWCq8ArvliaV0ydq4QmAxbR97Qs6fW2BZ/Php8UohvrVk/0xegaXEK7hbjlgKl2wAVwgsoosPZll232Plk+NZtvRzl9iT3dPzLDt8rvHnDFiWG1iTwpVSfGvFACw1Xim4bYgFtuVw5elPlQqwzmZMD5Ana+zx/ufJk+2j9Mldz9f+nALL3qdPildq8a0VAbAUeaXitiYW0LbVukJg6Wg9y+5/+djjz2ZLRbdhY770cJ5vHs8Okl+tZgfO5Zsr2YFLlT9XwLLbwJoUrxTjWyt8YKnySsltRSyQ7UJnEIGlo7UieckYxyq5Ba+y+/DGnNx12f/FfXipGgFxCixbnz2t4SvV+NYKHljKvFJzWxJL3nZ5AVcILD2tZic6g7LbR0kqr7H7cPHzgcof59BmpbfIKwPjnnFJNb6VQgeWOq8U3TJiydp2cYXA0lN1B+a1MSe9BJLqROtlYqcArMnxSjm+lQIHlgavVN2OfIk9rz5cIbD0tDHPjrzUTuivzkkq766UXQWW3tSfG2AhrwxKNb6VwgaWDq+U3coSqx9XCCxNrc/prHc18FrceLMlMge+mNC3EZ2qRcJwyo5IDlr54DJ7rHw2TCYCZze+lQL5g/WL8cq527JXOKyGVk6uya8kc9HMOqzd50hKk+kj+uzXf3aeLf18K6GriW83LSxrDazJta6Y1OJbKeQWllb7SueSx9tYgsaVpl9sYTFtH3voeFaOaBBdJH0Gb11CW8CaKK9ytfjWkvyjeagOmrzSueQRYg3hCoGlLzIoe7ZZjkPGYQ9c8gUs5JVxqcS3VrDAKvuDrt0yDRFrGFcILH2RhG46BnmZw35mCW2tGZ0wr5TiWytUYJXtK181WEQs0Ui7Kb9eTAMCFl02WCX07kqZwzShq/U5TtdhIa/MSjm+tQIFVtUf9FaDe4klgSsElpaKHH6AJvRaRm+67GZLfw6vhLYILAsfO1Veqce3VpjAqsev/NXgLrGkcIXA0lO914zcfMminUv57lm68azI9f3ivWZ2AGCpgTVZXqnHt1aQwGrG2z3W4AViSeIKgaWpajf/EfJknT1eoj2HzaHd/PaAZfxDpbIoWSnGt1aIwOLmB33WYJ5YsrQy4de5aVDAYucl7S/PS9osnixVRyRtni5+c7iZXLIOLBu8ks6jVKUW31oBAotfz+C1BtfEAuAKgaUvlRMpYwHW1HFFpHPiaIDAaq2/8luDGbFAuEJg6SsUYFnjleEPjU1pAau9XtRzDW4Ry6Fft6ahAUvaX3TAQl5BJASWxF/QWXVYWN/uuwY3xHLr16kpAqtXyCvP6gWWZKRdVYfF/Ti+a/BySSzXfp2apgAsC8QyDizkFUwRAKuzf9BrDab5JX88ljG/rk0RWH1CXvlW+MDq7nf2VoObkXYosRBYrhQXsJBXUAUPrJ7zGTzV4NYqUSCxEFiuZBVYyCvvEgMrjNWQfefJeKnByy1eQQ5N1vOLwAL6iwhYyCu4+oElF2lnwDLnV9W0TSsiGLEQWK5kE1hmeQVbGINiChxYvRtNPQKLewlELASWK1kEltFdzz0ZhZJQ2MDqTxHnNbg/ufYCkIXAciXLwDL1WYgrRQUNLMGByI5rcIWrji2AWAgsV7IHLJMNLMSVqgaANfr3tF0dRAe4u6zB3NBV11aeWAgsV2ontEksIK9CkABYUpG2XB2EXzjhqgYvjLT32coSC4HlStaAhbwKQuECS8grRzW4MzHYaytJLASWK9kClsEOIfJKQ8ECS8wrJzV4ucMrga0csRBYrmQTWGY+CXmlo1CBNcArBzW4SyuxrRSxEFiuZAlYxniF04N6GgLW2F/VYnUY4pVDYEnZyhALgeVKYQOrf4EMSl4iYMmE2l51GOSV9RosyCqhrQSxEFiuZAdYZnll4JMmqyCBNcwryzVYeBMU244TC4HlSiEDC3GlrxCBNcIrmzW4Z+hKxnaUWAgsV7ICLORVMBoElp8v2xvjla0a3DvSLmmLwBIJgcVfC/JKV0JgScTaTnUY5ZWdGjyGqxG3I8RCYLnSQkIbYQTyKhwFB6xxXtmowcvjvBpxO0wsBJYrWQCWkTWjyCszCg1YErwyX4MlaDXqdngYC4HlSpaApfkROD1oSoEBS4ZXpmuwFK3G3Q4SC4HlSuaBpd/AkssvlIyGgTX8JzZfHaR4ZbQGyzWupNwOEQuB5UoBAgtxZVBiYI3H2nh1kOOVwRoMwJWE2wFiIbBcyTiwDPFK7yJQlUICliSvjNVgEK5k3IqJhcByJdPAkk1KkbB5ZVYBAUs6NczUYCCupNwKiYXAciXDwNLkFY5emVY4wJJPDRM1GEorSbciYiGwXMkGsJStkVfGNQKswT+10eoAuJXp12AFXEm6FRALgeVKPcDS4AXyKjQNAGv07mSyOkCa3ro1WAlXsm77iYXAcqXFhNYHlrIx4sqCAgEWaKhArwYr4krabS+xEFiuZBRYBnilbI7q1Riw1Jd+D6ttCxva1PALHmlXcNtHLASWKwUDLOSVFQ0BayzYxqoDcCpG3a8GrgBue4iFwHIlk8BCXoWnEIAFnTpW9auFK4jbLrEQWK7UByxVbqgDC4evbGkUWAN/dEPVAbzURc2vHq1gbjvEQmC5Uieh1UOuzCucHbSnQWCNBNtMdYAvzVPwq00roNtFYiGwXMkcsJSXNCCvLMo7sBSWEgP98gPtzmowAqtU3MBSsUNe2dQ4sMR/eBPVQWXrA8hve17QXQ1uEwuB5Uq9wFKBh2oDC3FlVcPAGr49GagOSlu1AH6X27xyWYNbxEJguVI3oTWApXIBiCur8gssta2l0n4XaAUx1XHL1BrGQmDpavvYE3L+/AILm1eKUo9vS4N/fu3qoLgVXtJv3yoGlzWYJxYCS08XH8yy7L7HmidLh8+xJ7un51lWPcnNAUspM7E7qCid+LZlE1iqR3fI+O02rqRNddy2xBELgaWlsxnTA9yTJXpH3j5Kn9z1fO3PI7CQV4rSim9bFoGlfNTQuF8BrlzX4L01shBYOlrPsvtfPvb4szSJ17Olh/N8c4Ul8Wp24Bx5cuBS5a8XWGCIqPMKaoXSjG9bQzHQqw7qR6ON+RXiynkNromFwNLRWnaQjnGsFrfg3ZXsBHmtuPUWPzfmNK23jy5VIyA9Ca2AEZXcRF6pSjO+bdkClsZRjsN+B3DlvgZXxEJg6Wi1yN1qUHb7aNk9INlNU51ojfUmcpPAgllgd1BdmvFtyxKwdI6eHfI7RKsRUx23YjFiIbB0VN2BW6IJvcpux0U/4mDlzwSwwLk5mHSoEWnGt62BOGgDS9FW5JdrW9npxSpp+BtW7fnVNA0JWBvz7MhLCwlNewm7K2VXYWNeDXIIgAVCCTg5EVda0oxvW3aApXX0bL9fCVz5qcG6xEJg5etzOut9iXuJdhYWE/o2olMdkZTovioWSU7I+1nSQSxikInAuYlvWzaCcRmaEmPiaRVc5pS9wsQkmYtm1mHtPkdSmkwfVSlOZ5S4hK4mvvvuwMDWj1qHEGSBaksvvm1ZGBDSGcDq8yvVuOo31XErLb02FrawiLaPPXQ8K0c0yC15iTyU7DLAeAJNTuwOmpBOfBckjIdqSmvyatGvNK26pjpuIdIiFgKLiAzKnq2W46yVywoBwJInCig5cbTdkHTiuyDTwNLlVdsvBFf+arAOsRBYRCShq47B2axaliM5iwRBCiQ7IamHGpRWfBckColaSjNeGapKIFrl/mrwKQ1iTR5YdMKoSejd1Wx/tVOjWp8zsk7HErAQV0akH98FGQVW2b4yUJXkR646pjpuFW3ViTV5YO2uFOlKEnqNdhlWm30asiuhocCSeyfyyoz047soQVhUUrrqD2pXJRVc+QSWOrEmD6xmrxnpIKxx+Uxyfb/EXjNAloB5Jfdm1IC047soc8Cqx6/0qtKyGq68AkuZWAisejf/kXr7PhEZ1tiU281vDVhyb0UNSzu+i+qPDTylm/F2neqgSitNt9q2isRCYJXnJe0n5yWtZ62EzjdPF48ON/dkTWBJ8wqbVyalG99FGQIWNz+oXh3UaaXl1oStGrEQWER6J1IaBhaOXhmXoRNHKxkBFr+eQbU6aOHKN7DUiIXAItIHlkzCSPFKKwNR/bIALN3DpVrrr9Sqgx6tlN2as0Vg2ZYgoS0AC3hhKCOSBFZvwGEp3V4vCq8OGiNXjXwDS4VYCCyQPx1gyfAKm1deJQusvoiDUnphfTu0OvC4irAGN7ZwYkVYXE4BAWuUMRJrRhFXnuUKWIv7cUDVgafVcpQ1eAFYIGJFWFxOgQBLqoklzSuVC0MZkTSweiIOSOnO/kGAbacvGGEN5mzBxIqwuJwiApYsr5SuC2VGMGC1YyWf0t39zrK2fSNXEdZg3hZKrAiLyykkYA2jZrRDiM2rACQPrO49Sjqle85nkLJd7sNVlDW4ZQskVoTF5RQKsMabWCO8wtGrIAQAVifkCnqu3AAAE0NJREFUsindd57MqO2ygFYAvz0KAlhAYkVYXE7RAAvbV1EICiw+YJIp3Xv+1YitmFbyfvsUBrBgxIqwuJyCAtYQboaBhe2rQAQB1mLM5VK6/7y+IdtBWkn77VUgwAIRK8LicgoGWCNNLCle6VwYyojgwGqiJpXSgvNFxbYjtJL1a9zUrC2AWBEWl1M4wBom1hCwEFfhCASsBWLJA6v7ssB2nFayfo2bGraVJ1aExeUUGLBEWSXmFXYGgxIMWG1iyaS0aK64z3asKzhkK6lwgCVPrAiLyykgYA01sUTAkslHlEMBgdUilkRKC9e2dGxlaSXn14KpcVtZYkVYXE4hAUtMLEGaIq6CExRYfH9+PKUFA1gdWwCtpPzaMDVvK0msCIvLKThg9eZXf5oir8ITGFgcsUZTWswr3hZGKxm/Vkwt2MoRK8LicgoKWCJi9aYp4ipEwYHVIGsspQd4VdouL4NplUdZgwW2UsSKsLicAgRWN8+6eQpOSpQbqQCrCudISg/xilQHNVrlUdZgka0MsSIsLqewgNXfxOrkKdIqWKkBS2ZlyiCv1GmVR1mDhbYSxIqwuJwCA1YfsRYTFXEVsBSBNY4sEa+Wu4K6jrAGi23HiRVhcTmFBqwusdqZqpGXKAdSBtbIfUjAK11WUUVYgwdsR4kVYXE5hQksLve4TNVPTZRtqQNrcGCyl1dGaJVHWYOHbMeIFWFxOQUHrEViVZlqJjdRlqUDrFPCIIvuWmYyIsIaPGg7QqwIi8spPGAJUxJpFYH0gDUee1E6eKpKQQJrhFgRFpdTgMAaTlvrV4jSkSawcjCzWrY6fl2b2rQdJFaExeUUJLCIEFZRSh9YOYBZPbY6fp2aWrUdIlaExeUULLD0ltagPMkIsJhGITVgq+PXkald2wFiRVhcTgEDCxWhDAKLSuK7KIW2On7tm1q2FRMrwuJyQmChTAqBFYqtkFgRFpcTAgtlUqaBlcvxCoHVlYhYERaXEwILZVLGgZVL8QqB1SMBsSIsLicEFsqkzAMraNuwL7mfWBEWlxMCC2VSCKyQbHuJFWFxOSGwUCaFwArKto9YERaXEwILZVIIrLBse4gVYXE5IbBQJoXACswWgaXpT9ah3Gw2KjAhsEKz7RArwuJyChhYiKwIZQhY4NgjsIRaJFaExeUUKrCQV3HKDLDg0UdgCbU4jBVhcTkhsFAmZQRYw983MWyr49epqTvbBWIN2u7VkblLFitUYOEYVpwyByxFWx2/Tk0d2rZxMmA7Sp0xPwO/TB1YqChlrEuobKvj16WpS9sWscS2WrRinyD+VWDA2j72hJw/BFaUchFfftBdw1bHbyRuwbY8sQaApX5B458QFLAuPphl2X2P1c+3jx4sH+2enmfZ4XONPwRWhHIT31hqv3+3cFuOWAis/GzG9ED1wmpWJvT2UfqLu56v/SGw4pOj+EZT+727VbBtiIXAWs+y+18+9viz2RLrNuyuZlVCr2YHzuWbK9mBS5U/BFZ0chXfeGq/b7cqtjWxEFhrRfqSMY5Vdgu+eDyrEnpjTu+920eXqhEQBFZ8chXfiGq/Z7dKthWxxoD1C/R9Pw767Df2PsN9Qq8CAtZqdoIblF3LsiNfLRN6rf5Z9SYQWPHJVXxjqv1+3arZlsQaBdZH6P8/dgHw0XEBq7oDl8/2P1Z0Ilgik1Qnqp4jsGKUq/hGVfu9ulW0ZcSSA1b+0XsBnxwXsDbm2ZGXWtPeZQLvrpRdhY15NciBwIpPjuJ7Oa7a79Otqu3IgvQWsD5POoWke/hM/s77//n79+79yDvFfwXFyI+9HylfJFT76N69/zQqYOXrczrrfal5oT+hbyM6NazLl0fegGIyETgP8RXqMkbevso2lui3NJglsN4o+oS/UEDr8z924Z33F48/v5f+9wxtehU/yxeL5x8hzCqBpX5pkrlopsGz+xxJ6aWHxQldTXyP3oFxE2GAMhhfkRS24/DCFpacBttYbWDtfYZ19D567zvvpw0r+t+j75CxLfKzfE7f9Pm4Wlg5WQn90PGsHNHQ6TJo5i3KkkzFVygElhvbIWIttrA+z95c9AUfpWwq/3uDvPho9fzzZHT+nffHB6wn8rP1chwEVmoyFV+x9OKOwJLVALFawPqtH88/X84UtoH10b2PshZW9MBqOgYas0jIqyBlLL5i4aC7G1sxsRZnCd8o0ETUAhYZ2yK/qZ+T3mBUs4R02WB/QlfrcyDrdJBXgclwfMWKsPZHeMn5KSGxOuuwyH8cm0pAkQYW9+JHf5wbdLdzyZwMAGt3pUhXktBri10GXOmegpzFN8LaH+ElF7YiYvEr3T9SP350oUv4W+Q1MhJfvRjdsoZ6r9nioCzJ9f24lzB2uYpvhLU/wksmtgJiTWUvYb2b/0j1Qj2msYmnNSQgR/GNsPZHeMnUtp9YkwEWOy9pf3NeUjMIu3m6+M3hZskhAitGuYlvhLU/wktmtr3Emg6w8MTR1OX4xNFYbCO85NK2j1h4RHKPPwRWlLIVX34RS4S1P8JLrmz7iaUpS5fMCb+EAmVSwPi2lglHWPsjvOTadhQxdtxqCoGFMilYfNtfQOi7Bsfj1owtnFgILFRiUgBW/cx7DY7GrSFbMLEQWI1wR04SgncJmyf+a3Asbk3ZQomFwGqEm56TEHjQnXscQA2OxK0xWyCxEFi1kFdpCJc1xGULIxYCqxYCKw0hsCKzBRELgdUIeZWEEFix2UKIhcBCJSYEVnS2CKxBfwispIXAis9WnlgILFRikomvqPMfTA0O3q1hW2liIbBQiUkivsLplXBqcOhubQBLhlgILFRikjgCWzghHE4NDt2taVtZYiGwUIkJgRWlrSSxEFioxIRdwjht5YiFwEIlJhx0j9RWilgILFRiwmUNsdrKEAuBhSvcExMCK1pbCWIhsHATYWJCYMVrO04sBJZ4yggVpRBYEdtaPZcdgYUKUAismG3HiIXAEs9xo6IUAitq2xFiIbDEc9yoKKVzfFCINThMt/Zsh4mFwEIlJp0DGoOswUG6tWg7SCwEFioxCeJ7WWawMswaHKJbm7ZDxEJgoRLTELDGbAOtwQG6tWo7QCwEFioxDXQJR21DrcHhubVrKyYWAguVmMSD7uO2wdbg4NxathUSC4GFSky4rCEFWxGxEFioxITASsJWQCwEFioxIbDSsO0nFgILlZgQWInY9hJrysDCLTlJCoGVim0fsaYNLERWgkJgJWPbQ6wJAwt5laZawAJGOPQaHI5bN7ZdYk0YWHhMQ5rigQUNcfA1OBi3jmw7xJoysFBJiosv+Kyz8GtwKG5d2S4SC4GFSkwIrKRsF4iFwEIlJuwSpmXbJhYCC5WYcNA9MdsWsRBYqMSEyxpSs+WJhcBCJSYEVnK2HLFSBdb2sSeE/hBY8ctSfGOpwf7durVtiJUmsC4+mGXZfY+xJ7un51l2+FzjD4EVu6zFN5oa7N2tY9uaWEkC62zG9AB5sn2UPr7r+dofAity2YtvPDXYt1vXthWxUgTWepbd//Kxx5/Nlki3YTU7cC7fXMkOXKr8IbDilsX4RlSDPbt1blsSK0VgrWUH6RjHKrkFb8zpvXf76FI16DGb4Y6cqDUeX+UAx1SD/bp1b8uIlSKwVrMTzaAsyW7284HK3ww3EUYti/GNqgZ7devBduxb7C257chaC4uKZDfRepnYendgVACSiK9qhOOqwT7d+rDVJVaowNqYZ0deKhN6d6XsKmzMq0GOGcqQTAcO44vyKcn8M5/363M6632pJ6FvK+T775KMjAfOTHw1AqyTG55sI7zkUIsrmX4W8n73OZLSSw+3ErqZ+EZFruH43qb+wRqmvmwjvOQYi8vJ0kr3h45n2Ym+LgMqAQ3FN8LqMK1LjrG4nKxtzTmbHbiEwEpTQ/GNsDpM65JjLC4na8CivYTuLBIqAWF8Ub5kGlh0DWGd0NX6nGadDipuYXxRXmUaWLsrRe6ShF4j2zW6K6FRcQvji/Iqe3sJSW+hSO/97b1mqMiF8UX5lL3TGo6QJ5uLu/lRsWsgvotnzcC0fVRxIIycd7Ok6Pbi8cL255RxqzibVB5yoVYvds8Wf+WfeFjBcCWrpOB4k5wqpPhXJrYaf2Vets7D2l+el7R5mhQT778JSRjfzlkzMK0qjtyXBFXqla4x2/2Kl7yr2LbcmKsDq7xHsBsGSFrAKi9Z6a/8Vb2/ckuuTxxFJSBBfDtnzUC0u5qpAWudrmEt3CrU/o05tT2uOslZ8E6psBqzqqwXvvusGjqoilKDbQmaVYNbsK6w3T1rZOAAgYUCqz++WiPwpGumVIuLmkSXVhTNuxNg41U2u6m6EYO0OpQq4ar6rOp6CeY1ZebReROodIK7Wv6RVhUi1BGep4cypO5ZMxDb7MhXlarg9tESNhoQqD8DpqLmP6Q0hlUvuFXyqVvr11QgW7YJVdzXNkZW6yGwUIaks4p0bf9juvmsASzFofPV7KCa5fbRA79ftCjvUxjBVmRr6xNUkKfRwjK73wWBhTIj7bzUA5bGWrCvzpVaLetFS0WtrNWYu4Jb4vCrP9NMesCl1pesx7DgxggsVIjyDCzlMZ3VLFtSqf2UkGplXS86wJfyvzutMHBeODzNfQkIXKpg32WTsUcUiltN/66aGHVHYKHMSPssIS1gravOmu3++s/Os6WfhxuWh9qr1MG1ugaDqbPOoFHgQ7G864rU2DjOliYodGPJmY/0kk2sx0RgoczIawtrfb6kMRZ9UaFPyIau9Xo5CvBYr5pWiqvWVAfta+iocLJc7aY2Q7EgBBbKjHwCa01jVRJzDb3kci2THrAU2qL1GipFz6rN31UtTl6kUww4hoUKSbpnzagDS7l/VAleldbqReMa/RyFGlwDR5E8in9kIwPnuKwBFZJ0z5pRzefdVdVNH3X/yC2wdBYm1eRQHItSXPxhBFgaC08aIbBQhqR71owqsDQmn5r5K8V7v1r9XVVfhcldskrtV16yqtMlXKv2E5g4hAiBhTIk3bNmFIGltHC7lNZQMvsAxXVYhdvN44ob8w6fU75k5XWn6xqTk2y358W5kVMeEVgoU9I8S0gNWNVJLWpbEdfLkx5UpxgVe0hlh/IulcNa1ucal6zeo6v6wCrQKc/TMHJoGgILZUx6ZwmpAWs90wEWO6lJ+QgvZQBQtyqLMIktOXVMZVtPrr4Kq9BL5FQhRbdkbb7KCV49QmChUKhohMBCoVDRCIGFQqGiEQILhUJFIwQWCoWKRggsFAoVjRBYKBQqGiGwUChUNEJgoVCoaITAQqFQ0ShxYL3wsX2z2fs+/GWAyc5THy7+Pz+7s3rYqzO3XGg9v77vXsVLREUozCtfShpYW3fPSt0pb3R1dmteJhZ72P+mxTw6c9MzileJik2YV/6UMrC2Ds323FPcsG48MpsJb2kdcdkkTKytQ51f9LyESlOYVx6VMrDOzKr29dV9nTuXUDKJdX7Po1KvoVIU5pVHJQys6/ua1vR5mmNnWBP+PMuXFz5WtOnf9wmSe2dm937hA7PZHU/nOydJS/9W0nQvH14t0/N8k2Vbh8qM/aN9s5sfLdPv+j68FU5CmFc+lTCwznMjDFuHyH2qlVhPlsMQ5PGZ2e308U3PdBNr6xDNz+LZvYuffIYafZwl1s5JvBVOQphXPpUusPhMKHOKT6yrsz2fKh5/YcYybnbrhfwLtIHfGRw9Qz+nzC/2ySyFrs5m9+Q3Ts7KW+R5yBAsKlZhXnlVusBiN79K5xcTq3zM0q8clTjTZBOXWPz/5SezHGMfsXWo/I147geVkDCvvCplYPETwnwy1aMG3//iL949Y4l1a/2LTmKxDzrT3FfL0Ycqc6uP48c2UMkK88qrUgbW4J0wv1Etprl3sU2/uF6G5BSfpvVoKHupugO2MxmVqDCvvCpdYI2MNVzfN5vt+eBP/87J8cQiP/h2+XlRYuHo6ASEeeVV6QJreDanSLtbSft7RyKxyGwz13KvEqu682FiTUuYVz6VMLCqO9WTH/5yd71MlQVbh8YTKz+z51+c5Jrldb61xxqw6T4NYV75VMLAKudoyEaKj7MVySwFyE2wzoqrs+68dCexrs4+xK/eu76Pre9jVvTj2MuYWJMQ5pVHpQysrbvZnq8v7Ct3qXILXFjTfeczs57EImlTJhbLoCI3+bUw1S3v+r7i1Z0nZ3X64fTzJIR55VEpAyvfeaTaVc9W87E1xjf9O5Y/VLd8ZnFemoya3nKBJhZ7SO34YYR67fF5+hG34wK/iQnzyp+SBlaef+kROmnzy4+UGVL8vPlpdst64e7Z7H33sLtda176j/ZVicUe5tWWsVpXqxR6gdxrr+IWiskJ88qXEgdWrRsf07lNLdzk6k2qVLhJdcLCvHKsqQBLS52b3Hl+KU61DBBvhCiYMK/gQmBJ6AuLw56tW2G10QJvhCiYMK/gQmCN6sxs1rnJ8UfZlnvvce4ZBRLmlYoQWKP6zGzPPZ0XuS8LuMrmgPDLAlAgYV6pCIGFQqGiEQILhUJFIwQWCoWKRggsFAoVjRBYKBQqGiGwUChUNEJgoVCoaITAQqFQ0QiBhUKhohECC4VCRaP/D0SOf4geJU59AAAAAElFTkSuQmCC</file>
</questiontext>
<generalfeedback format="html">
<text><![CDATA[<p>
<ol type = "a">
<li> False. The short run market price is $40.00 </li>
<li> True. The short run equilbrium quantity under perfect competition is equal to 4 </li>
<li> True. The equilibrium price, $40.00 is less than the average cost at the market quantity, $46.25 </li>
<li> True. The consumer surplus is equal to $80.00 </li>
<li> False. The firm will not exit because p>AVC </li>
</ol>
</p>]]></text>
</generalfeedback>
<penalty>0</penalty>
<defaultgrade>1</defaultgrade>
<shuffleanswers>false</shuffleanswers>
<single>false</single>
<answernumbering>abc</answernumbering>
<answer fraction="-50" format="html">
<text><![CDATA[<p>
In this market, the short run market price will be equal to $50.00
</p>]]></text>
<feedback format="html">
<text><![CDATA[<p>
False. The short run market price is $40.00
</p>]]></text>
</feedback>
</answer>
<answer fraction="33.33333" format="html">
<text><![CDATA[<p>
The short run equilibrium quantity in the market under perfect competition is 4
</p>]]></text>
<feedback format="html">
<text><![CDATA[<p>
True. The short run equilbrium quantity under perfect competition is equal to 4
</p>]]></text>
</feedback>
</answer>
<answer fraction="33.33333" format="html">
<text><![CDATA[<p>
In the long run, the firm shown in the left-hand figure would want to exit the market.
</p>]]></text>
<feedback format="html">
<text><![CDATA[<p>
True. The equilibrium price, $40.00 is less than the average cost at the market quantity, $46.25
</p>]]></text>
</feedback>
</answer>
<answer fraction="33.33333" format="html">
<text><![CDATA[<p>
The short run consumer surplus in the market under perfect competition is $80.00
</p>]]></text>
<feedback format="html">
<text><![CDATA[<p>
True. The consumer surplus is equal to $80.00
</p>]]></text>
</feedback>
</answer>
<answer fraction="-50" format="html">
<text><![CDATA[<p>
In the short run, the firm on the left would want to exit the industry because their average costs are greater than the market price.
</p>]]></text>
<feedback format="html">
<text><![CDATA[<p>
False. The firm will not exit because p>AVC
</p>]]></text>
</feedback>
</answer>
</question>
</quiz>