This repository has been archived by the owner on Jan 4, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTD8_3.html
81 lines (76 loc) · 69.4 KB
/
TD8_3.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html><head><meta http-equiv="Content-Type" content="text/html; charset=utf-8"><meta http-equiv="X-UA-Compatible" content="IE=edge,IE=9,chrome=1"><meta name="generator" content="MATLAB 2020b"><title>Usage of AAKR for RUL prediction</title><style type="text/css">.rtcContent { padding: 30px; } .S0 { margin: 3px 10px 5px 4px; padding: 0px; line-height: 28.8px; min-height: 0px; white-space: pre-wrap; color: rgb(213, 80, 0); font-family: Helvetica, Arial, sans-serif; font-style: normal; font-size: 24px; font-weight: 400; text-align: left; }
.CodeBlock { background-color: #F7F7F7; margin: 10px 0 10px 0;}
.S1 { border-left: 1px solid rgb(233, 233, 233); border-right: 1px solid rgb(233, 233, 233); border-top: 1px solid rgb(233, 233, 233); border-bottom: 0px none rgb(0, 0, 0); border-radius: 4px 4px 0px 0px; padding: 6px 45px 0px 13px; line-height: 17.234px; min-height: 18px; white-space: nowrap; color: rgb(0, 0, 0); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; }
.S2 { border-left: 1px solid rgb(233, 233, 233); border-right: 1px solid rgb(233, 233, 233); border-top: 0px none rgb(0, 0, 0); border-bottom: 0px none rgb(0, 0, 0); border-radius: 0px; padding: 0px 45px 0px 13px; line-height: 17.234px; min-height: 18px; white-space: nowrap; color: rgb(0, 0, 0); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; }
.S3 { border-left: 1px solid rgb(233, 233, 233); border-right: 1px solid rgb(233, 233, 233); border-top: 0px none rgb(0, 0, 0); border-bottom: 1px solid rgb(233, 233, 233); border-radius: 0px; padding: 0px 45px 4px 13px; line-height: 17.234px; min-height: 18px; white-space: nowrap; color: rgb(0, 0, 0); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; }
.S4 { color: rgb(64, 64, 64); padding: 10px 0px 6px 17px; background: rgb(255, 255, 255) none repeat scroll 0% 0% / auto padding-box border-box; font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; overflow-x: hidden; line-height: 17.234px; }
.variableValue { width: 100% !important; }
.embeddedOutputsMatrixElement,.eoOutputWrapper .matrixElement {min-height: 18px; box-sizing: border-box;}
.embeddedOutputsMatrixElement .matrixElement,.eoOutputWrapper .matrixElement,.rtcDataTipElement .matrixElement {position: relative;}
.matrixElement .variableValue,.rtcDataTipElement .matrixElement .variableValue {white-space: pre; display: inline-block; vertical-align: top; overflow: hidden;}
.embeddedOutputsMatrixElement.inlineElement {}
.embeddedOutputsMatrixElement.inlineElement .topHeaderWrapper {display: none;}
.embeddedOutputsMatrixElement.inlineElement .veTable .body {padding-top: 0 !important; max-height: 100px;}
.inlineElement .matrixElement {max-height: 300px;}
.embeddedOutputsMatrixElement.rightPaneElement {}
.rightPaneElement .matrixElement,.rtcDataTipElement .matrixElement {overflow: hidden; padding-left: 9px;}
.rightPaneElement .matrixElement {margin-bottom: -1px;}
.embeddedOutputsMatrixElement .matrixElement .valueContainer,.eoOutputWrapper .matrixElement .valueContainer,.rtcDataTipElement .matrixElement .valueContainer {white-space: nowrap; margin-bottom: 3px;}
.embeddedOutputsMatrixElement .matrixElement .valueContainer .horizontalEllipsis.hide,.embeddedOutputsMatrixElement .matrixElement .verticalEllipsis.hide,.eoOutputWrapper .matrixElement .valueContainer .horizontalEllipsis.hide,.eoOutputWrapper .matrixElement .verticalEllipsis.hide,.rtcDataTipElement .matrixElement .valueContainer .horizontalEllipsis.hide,.rtcDataTipElement .matrixElement .verticalEllipsis.hide {display: none;}
.embeddedOutputsVariableMatrixElement .matrixElement .valueContainer.hideEllipses .verticalEllipsis, .embeddedOutputsVariableMatrixElement .matrixElement .valueContainer.hideEllipses .horizontalEllipsis {display:none;}
.embeddedOutputsMatrixElement .matrixElement .valueContainer .horizontalEllipsis,.eoOutputWrapper .matrixElement .valueContainer .horizontalEllipsis {margin-bottom: -3px;}
.eoOutputWrapper .embeddedOutputsVariableMatrixElement .matrixElement .valueContainer {cursor: default !important;}
.embeddedOutputsVariableElement {white-space: pre-wrap; word-wrap: break-word; min-height: 18px; max-height: 250px; overflow: auto;}
.variableElement {}
.embeddedOutputsVariableElement.inlineElement {}
.inlineElement .variableElement {}
.embeddedOutputsVariableElement.rightPaneElement {min-height: 16px;}
.rightPaneElement .variableElement {padding-top: 2px; padding-left: 9px;}
.variableNameElement {margin-bottom: 3px; display: inline-block;}
.matrixElement .horizontalEllipsis,.rtcDataTipElement .matrixElement .horizontalEllipsis {display: inline-block; margin-top: 3px; width: 30px; height: 12px; background-repeat: no-repeat; background-image: url("");}
.matrixElement .verticalEllipsis,.textElement .verticalEllipsis,.rtcDataTipElement .matrixElement .verticalEllipsis,.rtcDataTipElement .textElement .verticalEllipsis {margin-left: 35px; width: 12px; height: 30px; background-repeat: no-repeat; background-image: url("");}
.S5 { margin: 10px 10px 9px 4px; padding: 0px; line-height: 21px; min-height: 0px; white-space: pre-wrap; color: rgb(0, 0, 0); font-family: Helvetica, Arial, sans-serif; font-style: normal; font-size: 14px; font-weight: 400; text-align: left; }
.S6 { border-left: 1px solid rgb(233, 233, 233); border-right: 1px solid rgb(233, 233, 233); border-top: 0px none rgb(0, 0, 0); border-bottom: 1px solid rgb(233, 233, 233); border-radius: 0px 0px 4px 4px; padding: 0px 45px 4px 13px; line-height: 17.234px; min-height: 18px; white-space: nowrap; color: rgb(0, 0, 0); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; }
.S7 { border-left: 1px solid rgb(233, 233, 233); border-right: 1px solid rgb(233, 233, 233); border-top: 1px solid rgb(233, 233, 233); border-bottom: 1px solid rgb(233, 233, 233); border-radius: 0px 0px 4px 4px; padding: 6px 45px 4px 13px; line-height: 17.234px; min-height: 18px; white-space: nowrap; color: rgb(0, 0, 0); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; }
.S8 { border-left: 1px solid rgb(233, 233, 233); border-right: 1px solid rgb(233, 233, 233); border-top: 1px solid rgb(233, 233, 233); border-bottom: 1px solid rgb(233, 233, 233); border-radius: 4px 4px 0px 0px; padding: 6px 45px 4px 13px; line-height: 17.234px; min-height: 18px; white-space: nowrap; color: rgb(0, 0, 0); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; }
.S9 { border-left: 1px solid rgb(233, 233, 233); border-right: 1px solid rgb(233, 233, 233); border-top: 1px solid rgb(233, 233, 233); border-bottom: 1px solid rgb(233, 233, 233); border-radius: 0px; padding: 6px 45px 4px 13px; line-height: 17.234px; min-height: 18px; white-space: nowrap; color: rgb(0, 0, 0); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; }</style></head><body><div class = rtcContent><h1 class = 'S0'><span>Usage of AAKR for RUL prediction</span></h1><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>training_state=[8.99,17.75,32.17;</span></span></div></div><div class="inlineWrapper"><div class = 'S2'><span style="white-space: pre;"><span> 4.34,19.42,33.12;</span></span></div></div><div class="inlineWrapper"><div class = 'S2'><span style="white-space: pre;"><span> 8.00,16.15,35.04;</span></span></div></div><div class="inlineWrapper"><div class = 'S2'><span style="white-space: pre;"><span> 5.91,18.47,29.59];</span></span></div></div><div class="inlineWrapper"><div class = 'S2'><span style="white-space: pre;"><span>traning_RUL=[5.76;6.25;6.82;5.85];</span></span></div></div><div class="inlineWrapper outputs"><div class = 'S3'><span style="white-space: pre;"><span>obs_state = [4.15,14.53,28.96]</span></span></div><div class = 'S4'><div class="inlineElement eoOutputWrapper embeddedOutputsVariableMatrixElement" uid="EA11E0F3" data-scroll-top="null" data-scroll-left="null" data-width="802" data-testid="output_0" style="width: 832px; white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><div class="matrixElement veSpecifier" style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><div class="veVariableName variableNameElement double" style="width: 802px; white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><div class="headerElementClickToInteract" style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><span style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;">obs_state = </span><span class="veVariableValueSummary veMetaSummary" style="white-space: normal; font-style: normal; color: rgb(179, 179, 179); font-size: 12px;">1×3</span></div></div><div class="valueContainer" data-layout="{"columnWidth":66,"totalColumns":3,"totalRows":1,"charsPerColumn":10}" style="white-space: nowrap; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><div class="variableValue" style="width: 200px; white-space: pre; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"> 4.1500 14.5300 28.9600
</div><div class="horizontalEllipsis hide" style="white-space: nowrap; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"></div><div class="verticalEllipsis hide" style="white-space: nowrap; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"></div></div></div></div></div></div></div><div class = 'S5'><span>Frist, we normalize the data</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>mean_state = mean(training_state);</span></span></div></div><div class="inlineWrapper"><div class = 'S2'><span style="white-space: pre;"><span>std_state = std(training_state);</span></span></div></div><div class="inlineWrapper"><div class = 'S2'><span style="white-space: pre;"><span>traning_state_nor = (training_state-mean_state)./std_state;</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>obs_state_nor = (obs_state-mean_state)./std_state;</span></span></div></div></div><div class = 'S5'><span>Then, we then calculate the distance and the weight.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>h = 3;</span></span></div></div><div class="inlineWrapper outputs"><div class = 'S3'><span style="white-space: pre;"><span class="variableHighlight">d</span><span> = max(traning_state_nor-obs_state_nor,[],2)</span></span></div><div class = 'S4'><div class="inlineElement eoOutputWrapper embeddedOutputsVariableMatrixElement" uid="3062449D" data-scroll-top="null" data-scroll-left="null" data-width="802" data-testid="output_1" style="width: 832px; white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><div class="matrixElement veSpecifier" style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><div class="veVariableName variableNameElement double" style="width: 802px; white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><div class="headerElementClickToInteract" style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><span style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;">d = </span><span class="veVariableValueSummary veMetaSummary" style="white-space: normal; font-style: normal; color: rgb(179, 179, 179); font-size: 12px;">4×1</span></div></div><div class="valueContainer focusedInteractiveOutput" data-layout="{"columnWidth":66,"totalColumns":1,"totalRows":4,"charsPerColumn":10}" style="white-space: nowrap; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><div class="variableValue" style="width: 68px; white-space: pre; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"> 2.3337
3.5441
2.6825
2.8556
</div><div class="horizontalEllipsis hide" style="white-space: nowrap; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"></div><div class="verticalEllipsis hide" style="white-space: nowrap; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"></div></div></div></div></div></div><div class="inlineWrapper"><div class = 'S7'><span style="white-space: pre;"><span>w = 1./sqrt(2*pi)./h.*exp(-</span><span class="variableHighlight">d</span><span>.^2./2./h.^2);</span></span></div></div></div><div class = 'S5'><span>After that, we canculate the AAKR value</span></div><div class="CodeBlock"><div class="inlineWrapper outputs"><div class = 'S8'><span style="white-space: pre;"><span>nc_state = (w.')*training_state/sum(w)</span></span></div><div class = 'S4'><div class="inlineElement eoOutputWrapper embeddedOutputsVariableMatrixElement" uid="6EFE06FD" data-scroll-top="null" data-scroll-left="null" data-width="802" data-testid="output_2" style="width: 832px; white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><div class="matrixElement veSpecifier" style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><div class="veVariableName variableNameElement double" style="width: 802px; white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><div class="headerElementClickToInteract" style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><span style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;">nc_state = </span><span class="veVariableValueSummary veMetaSummary" style="white-space: normal; font-style: normal; color: rgb(179, 179, 179); font-size: 12px;">1×3</span></div></div><div class="valueContainer" data-layout="{"columnWidth":66,"totalColumns":3,"totalRows":1,"charsPerColumn":10}" style="white-space: nowrap; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><div class="variableValue" style="width: 200px; white-space: pre; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"> 7.0488 17.8350 32.4677
</div><div class="horizontalEllipsis hide" style="white-space: nowrap; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"></div><div class="verticalEllipsis hide" style="white-space: nowrap; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"></div></div></div></div></div></div><div class="inlineWrapper outputs"><div class = 'S9'><span style="white-space: pre;"><span>RUL_pre = (w.')*traning_RUL/sum(w)</span></span></div><div class = 'S4'><div class='variableElement' style='font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 12px; '>RUL_pre = 6.1579</div></div></div></div><div class = 'S5'><span>Finally we plot it.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>plot([0;1;2],training_state,</span><span style="color: rgb(170, 4, 249);">'k--'</span><span>)</span></span></div></div><div class="inlineWrapper"><div class = 'S2'><span style="white-space: pre;"><span>hold </span><span style="color: rgb(170, 4, 249);">on</span><span>;</span></span></div></div><div class="inlineWrapper"><div class = 'S2'><span style="white-space: pre;"><span>plot([0;1;2],nc_state,</span><span style="color: rgb(170, 4, 249);">'r-.*'</span><span>)</span></span></div></div><div class="inlineWrapper outputs"><div class = 'S3'><span style="white-space: pre;"><span>plot([0;1;2],obs_state,</span><span style="color: rgb(170, 4, 249);">'r-+'</span><span>)</span></span></div><div class = 'S4'><div class="inlineElement eoOutputWrapper embeddedOutputsFigure" uid="C430BF4D" data-scroll-top="null" data-scroll-left="null" data-testid="output_4" style="width: 832px;"><div class="figureElement" style="cursor: default;"><div class="figureContainingNode" style="width: 560px; max-width: 100%; display: inline-block;"><div class="GraphicsView" data-dojo-attach-point="graphicsViewNode,backgroundColorNode" id="uniqName_164_39" widgetid="uniqName_164_39" style="width: 100%; height: auto;"><img class="ImageView figureImage" data-dojo-attach-point="imageViewNode" draggable="false" ondragstart="return false;" id="uniqName_164_41" widgetid="uniqName_164_41" src="" style="width: 100%; height: auto;"></div></div></div></div></div></div></div></div>
<br>
<!--
##### SOURCE BEGIN #####
%% Usage of AAKR for RUL prediction
training_state=[8.99,17.75,32.17;
4.34,19.42,33.12;
8.00,16.15,35.04;
5.91,18.47,29.59];
traning_RUL=[5.76;6.25;6.82;5.85];
obs_state = [4.15,14.53,28.96]
%%
% Frist, we normalize the data
mean_state = mean(training_state);
std_state = std(training_state);
traning_state_nor = (training_state-mean_state)./std_state;
obs_state_nor = (obs_state-mean_state)./std_state;
%%
% Then, we then calculate the distance and the weight.
h = 3;
d = max(traning_state_nor-obs_state_nor,[],2)
w = 1./sqrt(2*pi)./h.*exp(-d.^2./2./h.^2);
%%
% After that, we canculate the AAKR value
nc_state = (w.')*training_state/sum(w)
RUL_pre = (w.')*traning_RUL/sum(w)
%%
% Finally we plot it.
plot([0;1;2],training_state,'kREPLACE_WITH_DASH_DASH')
hold on;
plot([0;1;2],nc_state,'r-.*')
plot([0;1;2],obs_state,'r-+')
##### SOURCE END #####
--></body></html>