This tutorial guides you through the process of analyzing FBPIC simulation results simulation data using FBPIC-EWP. Here, we provide an explanation of the different sections of the code, allowing the user to define the parameters for the postprocessing analysis.
First, we import the necessary libraries and define the output file name (file_out
) and simulation path (hdf5_path
). Subsequently, the code imports the simulation (sim = LpaDiagnostics(...)
) and it is possible to set magnetic_field = True
, in case to calculate the laser and plasma magnetic field on each tracked particle.
import numpy as np
from scipy.constants import c, e, m_e, pi
import time
import h5py
from tqdm import tqdm
from openpmd_viewer import OpenPMDTimeSeries, ParticleTracker
from openpmd_viewer.addons import LpaDiagnostics
from func import particles_loop, spatial_lowpass_filter, shift_half_step
# Defining the output file name
file_out = 'work_result_test.h5'
# Selecting the simulation
hdf5_path = ".../hdf5"
sim = LpaDiagnostics(hdf5_path, backend='h5py', check_all_files=False)
# Set to True if you want to decompose the magnetic field in m=0,1 modes (False by default)
magnetic_field = False
Select the species of particles to study that has to correspond to a species defined in the original FBPIC simulation (in this example species='elec_L'
). Here, we import the ids of the tracked particles at the last iteration with id_ = sim.get_particle(['id'], t = sim.t[-1], species=species)[0]
. We then randomly choose a subset of ten particles to study (i.e., id_array = np.random.choice(id_, size=10, replace=False)
).
# Selecting the particles to study
species = 'elec_L'
id_ = sim.get_particle(['id'], t = sim.t[-1], species=species)[0]
id_array = np.random.choice(id_, size=10, replace=False)
pt_select = ParticleTracker(sim, species=species, preserve_particle_index=True, select=id_array)
N_p = pt_select.N_selected # number of selected electrons
FBPIC-EWP automatically defines the timestep (dt
) from the original FBPIC simulation timestep.
# Define the time range
t = sim.t # (s)
N_t = t.size
dt = t[0:2].ptp() # (s), time step
Import the coordinates (x, y, z
), momenta (ux, uy, uz
), and total electric (Ex_t, Ey_t, Ez_t
) and magnetic (Bx_t, By_t, Bz_t
) fields of each particle for every iteration.
# Importing the coordinates, momenta and total EM-field of each particle for every iteration
if magnetic_field:
print('(1/3) Importing the coordinates, momenta and total EM-field of each particle for every iteration\n')
x, y, z, ux, uy, uz, Ex_t, Ey_t, Ez_t, Bx_t, By_t, Bz_t, w = sim.iterate(sim.get_particle,
['x', 'y', 'z', 'ux', 'uy', 'uz', 'E/x', 'E/y', 'E/z', 'B/x', 'B/y', 'B/z', 'w'],
spec=species, select=pt_select)
Bx_t, By_t, Bz_t = np.nan_to_num(Bx_t), np.nan_to_num(By_t), np.nan_to_num(Bz_t)
else:
print('(1/3) Importing the coordinates, momenta and total E-field of each particle for every iteration\n')
x, y, z, ux, uy, uz, Ex_t, Ey_t, Ez_t, w = sim.iterate(sim.get_particle,
['x', 'y', 'z', 'ux', 'uy', 'uz', 'E/x', 'E/y', 'E/z', 'w'],
spec=species, select=pt_select)
For each time step, extract and filter the electric and magnetic field components. Use a JIT-compiled loop (see func.py
) to interpolate the fields onto the particle positions and save the electric field components for each particle. Here, (Ex_las, Ey_las, Ez_las
) and (Ex_wake, Ey_wake, Ez_wake
) are arrays containing the laser and plasma electric field at each iteration for each selected particle. Analogously, (Bx_las, By_las, Bz_las
) and (Bx_wake, By_wake, Bz_wake
) are arrays containing the laser and plasma magnetic field at each iteration for each selected particle.
print('(2/3) Calculating the electric fields on each particle... \n')
# Electric field on particle calculation (iterate over each time step in the specified time range)
for it in tqdm(range(N_t)):
################################ ELECTRIC FIELD ##########################################
# Extract electric field components in cylindrical coordinates (V/m)
Er_w_map = sim.get_field(t=t[it], field='E', coord='r', m=0, theta=pi/2)[0]
Ez_w_map, info = sim.get_field(t=t[it], field='E', coord='z', m=0, theta=pi/2)
# Lowpass filter on the radial field
Er_w_map = spatial_lowpass_filter(Er_w_map, info.dz)
# Extract radial and axial coordinates for field interpolation
r_int, dr_int = info.r, info.dr # m
z_int, dz_int = info.z, info.dz # m
# JIT particle loop
Ex_l, Ey_l, Ez_l, Ex_w, Ey_w, Ez_w = particles_loop(
x[it, :], y[it, :], z[it, :], Ex_t[it, :], Ey_t[it, :], Ez_t[it, :],
r_int.min(), z_int.min(), dr_int, dz_int,
Er_w_map, Ez_w_map
)
# Saving all the electric fields (V/m)
Ex_las[it, :] = Ex_l
Ey_las[it, :] = Ey_l
Ez_las[it, :] = Ez_l
Ex_wake[it, :] = Ex_w
Ey_wake[it, :] = Ey_w
Ez_wake[it, :] = Ez_w
################################# MAGNETIC FIELD ##########################################
if magnetic_field:
# Extract magnetic field components in cylindrical coordinates (T)
Br_w_map = sim.get_field(t=t[it], field='B', coord='r', m=0, theta=pi/2)[0]
Bz_w_map, info = sim.get_field(t=t[it], field='B', coord='z', m=0, theta=pi/2)
# Lowpass filter on the radial field
Br_w_map = spatial_lowpass_filter(Br_w_map, info.dz)
# Extract radial and axial coordinates for field interpolation
r_int, dr_int = info.r, info.dr # m
z_int, dz_int = info.z, info.dz # m
# JIT particle loop
Bx_l, By_l, Bz_l, Bx_w, By_w, Bz_w = particles_loop(
x[it, :], y[it, :], z[it, :], Bx_t[it, :], By_t[it, :], Bz_t[it, :],
r_int.min(), z_int.min(), dr_int, dz_int,
Br_w_map, Bz_w_map
)
# Saving all the magnetic fields (T)
Bx_las[it, :] = Bx_l
By_las[it, :] = By_l
Bz_las[it, :] = Bz_l
Bx_wake[it, :] = Bx_w
By_wake[it, :] = By_w
Bz_wake[it, :] = Bz_w
For each particle, shift the momenta by half a time step, calculate the Lorentz factor and normalized velocities, compute the work done by the laser and wakefield components, and save the results. Here, (Wx_las, Wy_las, Wz_las
) and (Wx_wake, Wy_wake, Wz_wake
) are arrays containing the laser and plasma work at each iteration for each selected particle.
print('(3/3) Calculating the laser and wakefield work on each particle... \n')
########################## Solution ##########################
for ip in tqdm(range(N_p)):
ux_p, uy_p, uz_p = ux[:, ip], uy[:, ip], uz[:, ip]
Ex_las_p, Ey_las_p, Ez_las_p = Ex_las[:, ip], Ey_las[:, ip], Ez_las[:, ip]
Ex_wake_p, Ey_wake_p, Ez_wake_p = Ex_wake[:, ip], Ey_wake[:, ip], Ez_wake[:, ip]
ux_p = shift_half_step(ux_p, t, dt)
uy_p = shift_half_step(uy_p, t, dt)
uz_p = shift_half_step(uz_p, t, dt)
gamma_p = (1. + ux_p**2 + uy_p**2 + uz_p**2)**0.5
bx_p, by_p, bz_p = ux_p / gamma_p, uy_p / gamma_p, uz_p / gamma_p
Wx_las_p = -e * c * np.cumsum(Ex_las_p * bx_p) * dt
Wy_las_p = -e * c * np.cumsum(Ey_las_p * by_p) * dt
Wz_las_p = -e * c * np.cumsum(Ez_las_p * bz_p) * dt
Wx_wake_p = -e * c * np.cumsum(Ex_wake_p * bx_p) * dt
Wy_wake_p = -e * c * np.cumsum(Ey_wake_p * by_p) * dt
Wz_wake_p = -e * c * np.cumsum(Ez_wake_p * bz_p) * dt
Wx_las[:, ip] = Wx_las_p
Wy_las[:, ip] = Wy_las_p
Wz_las[:, ip] = Wz_las_p
Wx_wake[:, ip] = Wx_wake_p
Wy_wake[:, ip] = Wy_wake_p
Wz_wake[:, ip] = Wz_wake_p
gamma_c[:, ip] = gamma_p
Finally, save all the calculated data to an HDF5 file.
# Saving the data in a .h5 file
f_out = h5py.File(file_out, 'w')
f_out['w'], f_out['ids'] = w, id_array
f_out['x'], f_out['y'], f_out['z'] = x, y, z
f_out['ux'], f_out['uy'], f_out['uz'] = ux, uy, uz
f_out['Ex_wake'], f_out['Ey_wake'], f_out['Ez_wake'] = Ex_wake, Ey_wake, Ez_wake
f_out['Ex_las'], f_out['Ey_las'], f_out['Ez_las'] = Ex_las, Ey_las, Ez_las
f_out['Wx_wake'], f_out['Wy_wake'], f_out['Wz_wake'] = Wx_wake, Wy_wake, Wz_wake
f_out['Wx_las'], f_out['Wy_las'], f_out['Wz_las'] = Wx_las, Wy_las, Wz_las
if magnetic_field:
f_out['Bx_wake'], f_out['By_wake'], f_out['Bz_wake'] = Bx_wake, By_wake, Bz_wake
f_out['Bx_las'], f_out['By_las'], f_out['Bz_las'] = Bx_las, By_las, Bz_las
f_out.close()