-
Notifications
You must be signed in to change notification settings - Fork 68
/
Copy pathcartpole-policygradient.py
121 lines (104 loc) · 4.2 KB
/
cartpole-policygradient.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import tensorflow as tf
import numpy as np
import random
import gym
import math
import matplotlib.pyplot as plt
def softmax(x):
e_x = np.exp(x - np.max(x))
out = e_x / e_x.sum()
return out
def policy_gradient():
with tf.variable_scope("policy"):
params = tf.get_variable("policy_parameters",[4,2])
state = tf.placeholder("float",[None,4])
actions = tf.placeholder("float",[None,2])
advantages = tf.placeholder("float",[None,1])
linear = tf.matmul(state,params)
probabilities = tf.nn.softmax(linear)
good_probabilities = tf.reduce_sum(tf.mul(probabilities, actions),reduction_indices=[1])
eligibility = tf.log(good_probabilities) * advantages
loss = -tf.reduce_sum(eligibility)
optimizer = tf.train.AdamOptimizer(0.01).minimize(loss)
return probabilities, state, actions, advantages, optimizer
def value_gradient():
with tf.variable_scope("value"):
state = tf.placeholder("float",[None,4])
newvals = tf.placeholder("float",[None,1])
w1 = tf.get_variable("w1",[4,10])
b1 = tf.get_variable("b1",[10])
h1 = tf.nn.relu(tf.matmul(state,w1) + b1)
w2 = tf.get_variable("w2",[10,1])
b2 = tf.get_variable("b2",[1])
calculated = tf.matmul(h1,w2) + b2
diffs = calculated - newvals
loss = tf.nn.l2_loss(diffs)
optimizer = tf.train.AdamOptimizer(0.1).minimize(loss)
return calculated, state, newvals, optimizer, loss
def run_episode(env, policy_grad, value_grad, sess):
pl_calculated, pl_state, pl_actions, pl_advantages, pl_optimizer = policy_grad
vl_calculated, vl_state, vl_newvals, vl_optimizer, vl_loss = value_grad
observation = env.reset()
totalreward = 0
states = []
actions = []
advantages = []
transitions = []
update_vals = []
for _ in xrange(200):
# calculate policy
obs_vector = np.expand_dims(observation, axis=0)
probs = sess.run(pl_calculated,feed_dict={pl_state: obs_vector})
action = 0 if random.uniform(0,1) < probs[0][0] else 1
# record the transition
states.append(observation)
actionblank = np.zeros(2)
actionblank[action] = 1
actions.append(actionblank)
# take the action in the environment
old_observation = observation
observation, reward, done, info = env.step(action)
transitions.append((old_observation, action, reward))
totalreward += reward
if done:
break
for index, trans in enumerate(transitions):
obs, action, reward = trans
# calculate discounted monte-carlo return
future_reward = 0
future_transitions = len(transitions) - index
decrease = 1
for index2 in xrange(future_transitions):
future_reward += transitions[(index2) + index][2] * decrease
decrease = decrease * 0.97
obs_vector = np.expand_dims(obs, axis=0)
currentval = sess.run(vl_calculated,feed_dict={vl_state: obs_vector})[0][0]
# advantage: how much better was this action than normal
advantages.append(future_reward - currentval)
# update the value function towards new return
update_vals.append(future_reward)
# update value function
update_vals_vector = np.expand_dims(update_vals, axis=1)
sess.run(vl_optimizer, feed_dict={vl_state: states, vl_newvals: update_vals_vector})
# real_vl_loss = sess.run(vl_loss, feed_dict={vl_state: states, vl_newvals: update_vals_vector})
advantages_vector = np.expand_dims(advantages, axis=1)
sess.run(pl_optimizer, feed_dict={pl_state: states, pl_advantages: advantages_vector, pl_actions: actions})
return totalreward
env = gym.make('CartPole-v0')
env.monitor.start('cartpole-hill/', force=True)
policy_grad = policy_gradient()
value_grad = value_gradient()
sess = tf.InteractiveSession()
sess.run(tf.initialize_all_variables())
for i in xrange(2000):
reward = run_episode(env, policy_grad, value_grad, sess)
if reward == 200:
print "reward 200"
print i
break
t = 0
for _ in xrange(1000):
reward = run_episode(env, policy_grad, value_grad, sess)
t += reward
print t / 1000
env.monitor.close()