-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
185 lines (138 loc) · 7.11 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
# importing necessary packages
# for manipulating dataset
import numpy as np
import pandas as pd
# for building the model
import torch
print("Torch Version:" , torch.__version__)
torch_device = 'cuda' if torch.cuda.is_available() else 'cpu'
print("Available Torc Device:", torch_device)
# importing and loading the model
from transformers import PegasusForConditionalGeneration, PegasusTokenizerFast, Trainer, TrainingArguments
# splittin dataset
from sklearn.model_selection import train_test_split
# evaluation metric
from ignite.metrics import Rouge, RougeN, RougeL
print("\nReading the Dataset...")
df_headline = pd.read_csv('./dataset/news_headline.csv', header=0)
print(df_headline.shape)
print("\nSplitting the Dataset...")
x_train, x_test, y_train, y_test = train_test_split(df_headline['text'], df_headline['summary'], test_size=0.2,random_state=25, shuffle=True)
print(x_train.shape, y_train.shape)
print(x_test.shape, y_test.shape)
x_train_list, y_train_list = x_train.tolist(), y_train.tolist()
x_test_list, y_test_list = x_test.tolist(), y_test.tolist()
print("Length of the Training and Test Set...")
print(len(x_train_list), len(y_train_list))
print(len(x_test_list), len(y_test_list))
tokenizer_large = PegasusTokenizerFast.from_pretrained("google/pegasus-large")
model_large = PegasusForConditionalGeneration.from_pretrained("google/pegasus-large").to(torch_device)
# function to get summary of a text of list of texts
def get_summary(tokenizer, model, x):
x_tokenized = tokenizer(x, truncation=True, padding = True, return_tensors="pt").to(torch_device)
y_pred_tokenized= model.generate(**x_tokenized).to(torch_device)
y_pred = tokenizer.batch_decode(y_pred_tokenized, skip_special_tokens=True)
return y_pred
def calculate_rouge(m, y_pred, y):
candidate = [i.split() for i in y_pred ]
reference = [i.split() for i in y]
# print(candidate, reference)
m.update((candidate, reference))
return m.compute()
# dataset class to efficiently manage our dataset
class Dataset(torch.utils.data.Dataset):
def __init__(self, text, summary):
self.text= text
self.summary = summary
def __getitem__(self, idx):
item = {key: torch.tensor(val[idx]) for key, val in self.text.items()}
item['labels'] = torch.tensor(self.summary['input_ids'][idx]) # torch.tensor(self.summary[idx])
return item
def __len__(self):
return len(self.text['input_ids'])
# function to prepare training data for model fine-tuning
def prepare_data(tokenizer, x_train, y_train, x_val=None, y_val=None):
val = False if x_val is None or y_val is None else True
def tokenize_data(text, summary):
text_tokenized = tokenizer(text, truncation=True, padding=True)
summary_tokenized = tokenizer(summary, truncation=True, padding=True)
dataset_tokenized = Dataset(text_tokenized, summary_tokenized)
return dataset_tokenized
train_dataset = tokenize_data(x_train, y_train)
val_dataset = tokenize_data (x_val, y_val) if val else None
return train_dataset, val_dataset
# function to prepare and configure base model for fine-tuning
def prepare_finetuning(model, train_dataset, val_dataset=None, freeze_encoder=False, output_dir='./results'):
if freeze_encoder: # if freeze_encoder is true
for param in model.model.encoder.parameters(): # freeze the encode parameters
param.requires_grad = False
if val_dataset is not None:
training_args = TrainingArguments(
output_dir=output_dir, # output directory
adafactor=True, # use adafactor instead of AdamW
num_train_epochs=10, # total number of training epochs
per_device_train_batch_size=20, # batch size per device during training
per_device_eval_batch_size=20, # batch size for evaluation
save_steps=500, # number of updates steps before checkpoint saves
save_total_limit=5, # limit the total amount of checkpoints and deletes the older checkpoints
evaluation_strategy='steps', # evaluation strategy to adopt during training
eval_steps=500, # number of update steps before evaluation
warmup_steps=500, # number of warmup steps for learning rate scheduler
weight_decay=0.01, # strength of weight decay
logging_dir='./logs', # directory for storing logs
logging_steps=10,
)
trainer = Trainer(
model=model, # the instantiated transformer model
args=training_args, # training arguments as defined above
train_dataset=train_dataset, # training dataset
eval_dataset=val_dataset # evaluation dataset
)
else:
training_args = TrainingArguments(
output_dir=output_dir, # output directory
adafactor=True, # use adafactor instead of AdamW
num_train_epochs=12, # total number of training epochs
per_device_train_batch_size=20, # batch size per device during training, can increase if memory allows
save_steps=1000, # number of updates steps before checkpoint saves
save_total_limit=5, # limit the total amount of checkpoints and deletes the older checkpoints
warmup_steps=500, # number of warmup steps for learning rate scheduler
weight_decay=0.01, # strength of weight decay
logging_dir='./logs', # directory for storing logs
logging_steps=10,
)
trainer = Trainer(
model=model, # the instantiated transformer model
args=training_args, # training arguments as defined above
train_dataset=train_dataset, # training dataset
)
return trainer
print("\nPrinting the predicted sumamry - Pretrained:\n")
y_test_pred_pre = get_summary(tokenizer_large, model_large, x_test_list[10])
print(y_test_pred_pre)
print("\nCalculating the error - Pretrained:\n")
m = Rouge(variants=["L", 1], multiref="best")
r = 0
for i in range(0, len(x_test_list), 10):
y_test_pred = get_summary(tokenizer_large,model_large, x_test_list[i:i+10])
r = calculate_rouge(m, y_test_pred, y_test_list[i:i+10])
print("Rouge Score: ", r)
print("\nTokening the dataset")
train_dataset,_ = prepare_data(tokenizer_large, x_train_list, y_train_list)
print("Length of the dataset:", len(train_dataset))
print("\nPreparing model_large for finetuning...")
trainer = prepare_finetuning(model_large, train_dataset) # compile the trainer model
print("\nTraining...")
trainer.train()
print("\nEnd of Training...")
print("\nPrinting the predicted sumamry - Finetuned:\n")
y_test_pred_fin = get_summary(tokenizer_large, model_large, x_test_list[10])
print(y_test_pred_fin)
print("\nCalculating the error - Finetuned:\n")
m = Rouge(variants=["L", 1], multiref="best")
r = 0
for i in range(0, len(x_test_list), 10):
y_test_pred = get_summary(tokenizer_large,model_large, x_test_list[i:i+10])
r = calculate_rouge(m, y_test_pred, y_test_list[i:i+10])
print("Rouge Score: ", r)
print("\nEnd of job")