diff --git a/samples/notebooks/KubeFlow Pipeline Using TFX OSS Components.ipynb b/samples/notebooks/KubeFlow Pipeline Using TFX OSS Components.ipynb index 046870cc21c..d2d88f39c24 100644 --- a/samples/notebooks/KubeFlow Pipeline Using TFX OSS Components.ipynb +++ b/samples/notebooks/KubeFlow Pipeline Using TFX OSS Components.ipynb @@ -43,10 +43,10 @@ "EVAL_DATA = 'gs://ml-pipeline-playground/tfx/taxi-cab-classification/eval.csv'\n", "HIDDEN_LAYER_SIZE = '1500'\n", "STEPS = 3000\n", - "DATAFLOW_TFDV_IMAGE = 'gcr.io/ml-pipeline/ml-pipeline-dataflow-tfdv:5df2cdc1ed145320204e8bc73b59cdbd7b3da28f'\n", - "DATAFLOW_TFT_IMAGE = 'gcr.io/ml-pipeline/ml-pipeline-dataflow-tft:5df2cdc1ed145320204e8bc73b59cdbd7b3da28f'\n", - "DATAFLOW_TFMA_IMAGE = 'gcr.io/ml-pipeline/ml-pipeline-dataflow-tfma:5df2cdc1ed145320204e8bc73b59cdbd7b3da28f'\n", - "DATAFLOW_TF_PREDICT_IMAGE = 'gcr.io/ml-pipeline/ml-pipeline-dataflow-tf-predict:5df2cdc1ed145320204e8bc73b59cdbd7b3da28f'\n", + "DATAFLOW_TFDV_IMAGE = 'gcr.io/ml-pipeline/ml-pipeline-dataflow-tfdv:6ad2601ec7d04e842c212c50d5c78e548e12ddea'\n", + "DATAFLOW_TFT_IMAGE = 'gcr.io/ml-pipeline/ml-pipeline-dataflow-tft:6ad2601ec7d04e842c212c50d5c78e548e12ddea'\n", + "DATAFLOW_TFMA_IMAGE = 'gcr.io/ml-pipeline/ml-pipeline-dataflow-tfma:6ad2601ec7d04e842c212c50d5c78e548e12ddea'\n", + "DATAFLOW_TF_PREDICT_IMAGE = 'gcr.io/ml-pipeline/ml-pipeline-dataflow-tf-predict:6ad2601ec7d04e842c212c50d5c78e548e12ddea'\n", "KUBEFLOW_TF_TRAINER_IMAGE = 'gcr.io/ml-pipeline/ml-pipeline-kubeflow-tf-trainer:5df2cdc1ed145320204e8bc73b59cdbd7b3da28f'\n", "KUBEFLOW_TF_TRAINER_GPU_IMAGE = 'gcr.io/ml-pipeline/ml-pipeline-kubeflow-tf-trainer-gpu:5df2cdc1ed145320204e8bc73b59cdbd7b3da28f'\n", "KUBEFLOW_DEPLOYER_IMAGE = 'gcr.io/ml-pipeline/ml-pipeline-kubeflow-deployer:5df2cdc1ed145320204e8bc73b59cdbd7b3da28f'\n", diff --git a/samples/tfx/taxi-cab-classification-pipeline.py b/samples/tfx/taxi-cab-classification-pipeline.py index 754f7841617..4099cd7cd5f 100755 --- a/samples/tfx/taxi-cab-classification-pipeline.py +++ b/samples/tfx/taxi-cab-classification-pipeline.py @@ -21,7 +21,7 @@ def dataflow_tf_data_validation_op(inference_data: 'GcsUri', validation_data: 'GcsUri', column_names: 'GcsUri[text/json]', key_columns, project: 'GcpProject', mode, validation_output: 'GcsUri[Directory]', step_name='validation'): return dsl.ContainerOp( name = step_name, - image = 'gcr.io/ml-pipeline/ml-pipeline-dataflow-tfdv:5df2cdc1ed145320204e8bc73b59cdbd7b3da28f', + image = 'gcr.io/ml-pipeline/ml-pipeline-dataflow-tfdv:6ad2601ec7d04e842c212c50d5c78e548e12ddea', arguments = [ '--csv-data-for-inference', inference_data, '--csv-data-to-validate', validation_data, @@ -40,7 +40,7 @@ def dataflow_tf_data_validation_op(inference_data: 'GcsUri', validation_data: 'G def dataflow_tf_transform_op(train_data: 'GcsUri', evaluation_data: 'GcsUri', schema: 'GcsUri[text/json]', project: 'GcpProject', preprocess_mode, preprocess_module: 'GcsUri[text/code/python]', transform_output: 'GcsUri[Directory]', step_name='preprocess'): return dsl.ContainerOp( name = step_name, - image = 'gcr.io/ml-pipeline/ml-pipeline-dataflow-tft:5df2cdc1ed145320204e8bc73b59cdbd7b3da28f', + image = 'gcr.io/ml-pipeline/ml-pipeline-dataflow-tft:6ad2601ec7d04e842c212c50d5c78e548e12ddea', arguments = [ '--train', train_data, '--eval', evaluation_data, @@ -74,7 +74,7 @@ def tf_train_op(transformed_data_dir, schema: 'GcsUri[text/json]', learning_rate def dataflow_tf_model_analyze_op(model: 'TensorFlow model', evaluation_data: 'GcsUri', schema: 'GcsUri[text/json]', project: 'GcpProject', analyze_mode, analyze_slice_column, analysis_output: 'GcsUri', step_name='analysis'): return dsl.ContainerOp( name = step_name, - image = 'gcr.io/ml-pipeline/ml-pipeline-dataflow-tfma:5df2cdc1ed145320204e8bc73b59cdbd7b3da28f', + image = 'gcr.io/ml-pipeline/ml-pipeline-dataflow-tfma:6ad2601ec7d04e842c212c50d5c78e548e12ddea', arguments = [ '--model', model, '--eval', evaluation_data, @@ -91,7 +91,7 @@ def dataflow_tf_model_analyze_op(model: 'TensorFlow model', evaluation_data: 'Gc def dataflow_tf_predict_op(evaluation_data: 'GcsUri', schema: 'GcsUri[text/json]', target: str, model: 'TensorFlow model', predict_mode, project: 'GcpProject', prediction_output: 'GcsUri', step_name='prediction'): return dsl.ContainerOp( name = step_name, - image = 'gcr.io/ml-pipeline/ml-pipeline-dataflow-tf-predict:5df2cdc1ed145320204e8bc73b59cdbd7b3da28f', + image = 'gcr.io/ml-pipeline/ml-pipeline-dataflow-tf-predict:6ad2601ec7d04e842c212c50d5c78e548e12ddea', arguments = [ '--data', evaluation_data, '--schema', schema,