-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathql_eval_txt.py
46 lines (33 loc) · 1.36 KB
/
ql_eval_txt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import argparse
from tqdm import tqdm
from keras.models import load_model
from DQL.agent_them import MineSweeperAgent
from minesweeper_env import *
def parse_args():
parser = argparse.ArgumentParser(description='Play Minesweeper online using a DQN')
parser.add_argument('--model', type=str, default='saved/trial_weight_l9_2000',
help='name of model')
parser.add_argument('--episodes', type=int, default=4,
help='Number of episodes to play')
return parser.parse_args()
params = parse_args()
def main():
env = MinesweeperEnv(9, 9, 10)
agent = MineSweeperAgent("minesweeper-deepql_v1", board_size=9)
agent.main_network.load_weights(f'{params.model}.h5')
agent.epsilon = 0
output_file = open("result.txt", "a+")
for episode in tqdm(range(1, params.episodes + 1)):
env.reset()
output_file.write("Episode {e}\n".format(e=episode))
done = False
while not done:
current_state = env.state_im
output_file.writelines(str((current_state[:, :, 0]*8).astype('int32')))
output_file.write("\n")
action = agent.act(current_state)
new_state, reward, done = env.step(action)
output_file.writelines(str((new_state[:, :, 0] * 8).astype('int32')))
output_file.write("\n")
if __name__ == "__main__":
main()