-
Notifications
You must be signed in to change notification settings - Fork 39
/
Copy pathlibbz3.c
1053 lines (868 loc) · 35.4 KB
/
libbz3.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* BZip3 - A spiritual successor to BZip2.
* Copyright (C) 2022-2024 Kamila Szewczyk
*
* This program is free software: you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU Lesser General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "libbz3.h"
#include <stdlib.h>
#include <string.h>
#include "libsais.h"
#if defined(__GNUC__) || defined(__clang__)
#define LIKELY(x) __builtin_expect(!!(x), 1)
#define UNLIKELY(x) __builtin_expect(!!(x), 0)
#else
#define LIKELY(x) (x)
#define UNLIKELY(x) (x)
#endif
/* CRC32 implementation. Since CRC32 generally takes less than 1% of the runtime on real-world data (e.g. the
Silesia corpus), I decided against using hardware CRC32. This implementation is simple, fast, fool-proof and
good enough to be used with bzip3. */
static const u32 crc32Table[256] = {
0x00000000L, 0xF26B8303L, 0xE13B70F7L, 0x1350F3F4L, 0xC79A971FL, 0x35F1141CL, 0x26A1E7E8L, 0xD4CA64EBL, 0x8AD958CFL,
0x78B2DBCCL, 0x6BE22838L, 0x9989AB3BL, 0x4D43CFD0L, 0xBF284CD3L, 0xAC78BF27L, 0x5E133C24L, 0x105EC76FL, 0xE235446CL,
0xF165B798L, 0x030E349BL, 0xD7C45070L, 0x25AFD373L, 0x36FF2087L, 0xC494A384L, 0x9A879FA0L, 0x68EC1CA3L, 0x7BBCEF57L,
0x89D76C54L, 0x5D1D08BFL, 0xAF768BBCL, 0xBC267848L, 0x4E4DFB4BL, 0x20BD8EDEL, 0xD2D60DDDL, 0xC186FE29L, 0x33ED7D2AL,
0xE72719C1L, 0x154C9AC2L, 0x061C6936L, 0xF477EA35L, 0xAA64D611L, 0x580F5512L, 0x4B5FA6E6L, 0xB93425E5L, 0x6DFE410EL,
0x9F95C20DL, 0x8CC531F9L, 0x7EAEB2FAL, 0x30E349B1L, 0xC288CAB2L, 0xD1D83946L, 0x23B3BA45L, 0xF779DEAEL, 0x05125DADL,
0x1642AE59L, 0xE4292D5AL, 0xBA3A117EL, 0x4851927DL, 0x5B016189L, 0xA96AE28AL, 0x7DA08661L, 0x8FCB0562L, 0x9C9BF696L,
0x6EF07595L, 0x417B1DBCL, 0xB3109EBFL, 0xA0406D4BL, 0x522BEE48L, 0x86E18AA3L, 0x748A09A0L, 0x67DAFA54L, 0x95B17957L,
0xCBA24573L, 0x39C9C670L, 0x2A993584L, 0xD8F2B687L, 0x0C38D26CL, 0xFE53516FL, 0xED03A29BL, 0x1F682198L, 0x5125DAD3L,
0xA34E59D0L, 0xB01EAA24L, 0x42752927L, 0x96BF4DCCL, 0x64D4CECFL, 0x77843D3BL, 0x85EFBE38L, 0xDBFC821CL, 0x2997011FL,
0x3AC7F2EBL, 0xC8AC71E8L, 0x1C661503L, 0xEE0D9600L, 0xFD5D65F4L, 0x0F36E6F7L, 0x61C69362L, 0x93AD1061L, 0x80FDE395L,
0x72966096L, 0xA65C047DL, 0x5437877EL, 0x4767748AL, 0xB50CF789L, 0xEB1FCBADL, 0x197448AEL, 0x0A24BB5AL, 0xF84F3859L,
0x2C855CB2L, 0xDEEEDFB1L, 0xCDBE2C45L, 0x3FD5AF46L, 0x7198540DL, 0x83F3D70EL, 0x90A324FAL, 0x62C8A7F9L, 0xB602C312L,
0x44694011L, 0x5739B3E5L, 0xA55230E6L, 0xFB410CC2L, 0x092A8FC1L, 0x1A7A7C35L, 0xE811FF36L, 0x3CDB9BDDL, 0xCEB018DEL,
0xDDE0EB2AL, 0x2F8B6829L, 0x82F63B78L, 0x709DB87BL, 0x63CD4B8FL, 0x91A6C88CL, 0x456CAC67L, 0xB7072F64L, 0xA457DC90L,
0x563C5F93L, 0x082F63B7L, 0xFA44E0B4L, 0xE9141340L, 0x1B7F9043L, 0xCFB5F4A8L, 0x3DDE77ABL, 0x2E8E845FL, 0xDCE5075CL,
0x92A8FC17L, 0x60C37F14L, 0x73938CE0L, 0x81F80FE3L, 0x55326B08L, 0xA759E80BL, 0xB4091BFFL, 0x466298FCL, 0x1871A4D8L,
0xEA1A27DBL, 0xF94AD42FL, 0x0B21572CL, 0xDFEB33C7L, 0x2D80B0C4L, 0x3ED04330L, 0xCCBBC033L, 0xA24BB5A6L, 0x502036A5L,
0x4370C551L, 0xB11B4652L, 0x65D122B9L, 0x97BAA1BAL, 0x84EA524EL, 0x7681D14DL, 0x2892ED69L, 0xDAF96E6AL, 0xC9A99D9EL,
0x3BC21E9DL, 0xEF087A76L, 0x1D63F975L, 0x0E330A81L, 0xFC588982L, 0xB21572C9L, 0x407EF1CAL, 0x532E023EL, 0xA145813DL,
0x758FE5D6L, 0x87E466D5L, 0x94B49521L, 0x66DF1622L, 0x38CC2A06L, 0xCAA7A905L, 0xD9F75AF1L, 0x2B9CD9F2L, 0xFF56BD19L,
0x0D3D3E1AL, 0x1E6DCDEEL, 0xEC064EEDL, 0xC38D26C4L, 0x31E6A5C7L, 0x22B65633L, 0xD0DDD530L, 0x0417B1DBL, 0xF67C32D8L,
0xE52CC12CL, 0x1747422FL, 0x49547E0BL, 0xBB3FFD08L, 0xA86F0EFCL, 0x5A048DFFL, 0x8ECEE914L, 0x7CA56A17L, 0x6FF599E3L,
0x9D9E1AE0L, 0xD3D3E1ABL, 0x21B862A8L, 0x32E8915CL, 0xC083125FL, 0x144976B4L, 0xE622F5B7L, 0xF5720643L, 0x07198540L,
0x590AB964L, 0xAB613A67L, 0xB831C993L, 0x4A5A4A90L, 0x9E902E7BL, 0x6CFBAD78L, 0x7FAB5E8CL, 0x8DC0DD8FL, 0xE330A81AL,
0x115B2B19L, 0x020BD8EDL, 0xF0605BEEL, 0x24AA3F05L, 0xD6C1BC06L, 0xC5914FF2L, 0x37FACCF1L, 0x69E9F0D5L, 0x9B8273D6L,
0x88D28022L, 0x7AB90321L, 0xAE7367CAL, 0x5C18E4C9L, 0x4F48173DL, 0xBD23943EL, 0xF36E6F75L, 0x0105EC76L, 0x12551F82L,
0xE03E9C81L, 0x34F4F86AL, 0xC69F7B69L, 0xD5CF889DL, 0x27A40B9EL, 0x79B737BAL, 0x8BDCB4B9L, 0x988C474DL, 0x6AE7C44EL,
0xBE2DA0A5L, 0x4C4623A6L, 0x5F16D052L, 0xAD7D5351L
};
static u32 crc32sum(u32 crc, u8 * RESTRICT buf, size_t size) {
while (size--) crc = crc32Table[((u8)crc ^ *(buf++)) & 0xff] ^ (crc >> 8);
return crc;
}
/* LZP code. These constants were manually tuned to give the best compression ratio while using relatively
little resources. The LZP dictionary is only around 1MiB in size and the minimum match length was chosen
so that LZP would not interfere too much with the Burrows-Wheeler transform and the arithmetic coder, and
just collapse long redundant data instead (for a major speed-up at a low compression ratio cost - in fact,
LZP preprocessing often improves compression in some cases). */
/* A heavily modified version of libbsc's LZP predictor w/ unaligned accesses follows. This one has single thread
performance and provides better compression ratio. It is also mostly UB-free and less brittle during
AFL fuzzing. */
#define LZP_DICTIONARY 18
#define LZP_MIN_MATCH 40
#define MATCH 0xf2
static u32 lzp_upcast(const u8 * ptr) {
// val = *(u32 *)ptr; - written this way to avoid UB
u32 val;
memcpy(&val, ptr, sizeof(val));
return val;
}
/**
* @brief Check if the buffer size is sufficient for decoding a bz3 block
*
* Data passed to the last step can be one of the following:
* - original data
* - original data + LZP
* - original data + RLE
* - original data + RLE + LZP
*
* We must ensure `buffer_size` is large enough to store the data at every step
* when walking backwards. The required size may be stored in either `lzp_size`,
* `rle_size` OR `orig_size`.
*
* @param buffer_size Size of the output buffer
* @param lzp_size Size after LZP decompression (-1 if LZP not used)
* @param rle_size Size after RLE decompression (-1 if RLE not used)
* @return 1 if buffer size is sufficient, 0 otherwise
*/
static int bz3_check_buffer_size(size_t buffer_size, s32 lzp_size, s32 rle_size, s32 orig_size) {
// Handle -1 cases to avoid implicit conversion issues
size_t effective_lzp_size = lzp_size < 0 ? 0 : (size_t)lzp_size;
size_t effective_rle_size = rle_size < 0 ? 0 : (size_t)rle_size;
size_t effective_orig_size = orig_size < 0 ? 0 : (size_t)orig_size;
// Check if buffer can hold intermediate results
return (effective_lzp_size <= buffer_size) && (effective_rle_size <= buffer_size) && (effective_orig_size <= buffer_size);
}
static s32 lzp_encode_block(const u8 * RESTRICT in, const u8 * in_end, u8 * RESTRICT out, u8 * out_end,
s32 * RESTRICT lut) {
const u8 * ins = in;
const u8 * outs = out;
const u8 * out_eob = out_end - 8;
const u8 * heur = in;
u32 ctx;
for (s32 i = 0; i < 4; ++i) *out++ = *in++;
ctx = ((u32)in[-1]) | (((u32)in[-2]) << 8) | (((u32)in[-3]) << 16) | (((u32)in[-4]) << 24);
while (in < in_end - LZP_MIN_MATCH - 32 && out < out_eob) {
u32 idx = (ctx >> 15 ^ ctx ^ ctx >> 3) & ((s32)(1 << LZP_DICTIONARY) - 1);
s32 val = lut[idx];
lut[idx] = in - ins;
if (val > 0) {
const u8 * RESTRICT ref = ins + val;
if (memcmp(in + LZP_MIN_MATCH - 4, ref + LZP_MIN_MATCH - 4, sizeof(u32)) == 0 &&
memcmp(in, ref, sizeof(u32)) == 0) {
if (heur > in && lzp_upcast(heur) != lzp_upcast(ref + (heur - in))) goto not_found;
s32 len = 4;
for (; in + len < in_end - LZP_MIN_MATCH - 32; len += sizeof(u32)) {
if (lzp_upcast(in + len) != lzp_upcast(ref + len)) break;
}
if (len < LZP_MIN_MATCH) {
if (heur < in + len) heur = in + len;
goto not_found;
}
len += in[len] == ref[len];
len += in[len] == ref[len];
len += in[len] == ref[len];
in += len;
ctx = ((u32)in[-1]) | (((u32)in[-2]) << 8) | (((u32)in[-3]) << 16) | (((u32)in[-4]) << 24);
*out++ = MATCH;
len -= LZP_MIN_MATCH;
while (len >= 254) {
len -= 254;
*out++ = 254;
if (out >= out_eob) break;
}
*out++ = len;
} else {
not_found:;
u8 next = *out++ = *in++;
ctx = ctx << 8 | next;
if (next == MATCH) *out++ = 255;
}
} else {
ctx = (ctx << 8) | (*out++ = *in++);
}
}
ctx = ((u32)in[-1]) | (((u32)in[-2]) << 8) | (((u32)in[-3]) << 16) | (((u32)in[-4]) << 24);
while (in < in_end && out < out_eob) {
u32 idx = (ctx >> 15 ^ ctx ^ ctx >> 3) & ((s32)(1 << LZP_DICTIONARY) - 1);
s32 val = lut[idx];
lut[idx] = (s32)(in - ins);
u8 next = *out++ = *in++;
ctx = ctx << 8 | next;
if (next == MATCH && val > 0) *out++ = 255;
}
return out >= out_eob ? -1 : (s32)(out - outs);
}
static s32 lzp_decode_block(const u8 * RESTRICT in, const u8 * in_end, s32 * RESTRICT lut, u8 * RESTRICT out,
const u8 * out_end) {
const u8 * outs = out;
for (s32 i = 0; i < 4; ++i) *out++ = *in++;
u32 ctx = ((u32)out[-1]) | (((u32)out[-2]) << 8) | (((u32)out[-3]) << 16) | (((u32)out[-4]) << 24);
while (in < in_end && out < out_end) {
u32 idx = (ctx >> 15 ^ ctx ^ ctx >> 3) & ((s32)(1 << LZP_DICTIONARY) - 1);
s32 val = lut[idx]; // SAFETY: guaranteed to be in-bounds by & mask.
lut[idx] = (s32)(out - outs);
if (*in == MATCH && val > 0) {
in++;
// SAFETY: 'in' is advanced here, but it may have been at last index in the case of untrusted bad data.
if (UNLIKELY(in == in_end)) return -1;
if (*in != 255) {
s32 len = LZP_MIN_MATCH;
while (1) {
if (UNLIKELY(in == in_end)) return -1;
len += *in;
if (*in++ != 254) break;
}
const u8 * ref = outs + val;
const u8 * oe = out + len;
if (UNLIKELY(oe > out_end)) oe = out_end;
while (out < oe) *out++ = *ref++;
ctx = ((u32)out[-1]) | (((u32)out[-2]) << 8) | (((u32)out[-3]) << 16) | (((u32)out[-4]) << 24);
} else {
in++;
ctx = (ctx << 8) | (*out++ = MATCH);
}
} else {
ctx = (ctx << 8) | (*out++ = *in++);
}
}
return out - outs;
}
static s32 lzp_compress(const u8 * RESTRICT in, u8 * RESTRICT out, s32 n, s32 * RESTRICT lut) {
if (n < LZP_MIN_MATCH + 32) return -1;
memset(lut, 0, sizeof(s32) * (1 << LZP_DICTIONARY));
return lzp_encode_block(in, in + n, out, out + n, lut);
}
static s32 lzp_decompress(const u8 * RESTRICT in, u8 * RESTRICT out, s32 n, s32 max, s32 * RESTRICT lut) {
if (n < 4) return -1;
memset(lut, 0, sizeof(s32) * (1 << LZP_DICTIONARY));
return lzp_decode_block(in, in + n, lut, out, out + max);
}
/* RLE code. Unlike RLE in other compressors, we collapse all runs if they yield a net gain
for a given character and encode this as a set bit in the RLE metadata. This improves the
performance and reduces the amount of collapsing done in normal blocks (so that BWT+AC can
be more efficient) while we still filter out all the pathological data. */
static s32 mrlec(u8 * in, s32 inlen, u8 * out) {
u8 * ip = in;
u8 * in_end = in + inlen;
s32 op = 0;
s32 c, pc = -1;
s32 t[256] = { 0 };
s32 run = 0;
while ((c = (ip < in_end ? *ip++ : -1)) != -1) {
if (c == pc)
t[c] += (++run % 255) != 0;
else
--t[c], run = 0;
pc = c;
}
for (s32 i = 0; i < 32; ++i) {
c = 0;
for (s32 j = 0; j < 8; ++j) c += (t[i * 8 + j] > 0) << j;
out[op++] = c;
}
ip = in;
c = pc = -1;
run = 0;
do {
c = ip < in_end ? *ip++ : -1;
if (c == pc)
++run;
else if (run > 0 && t[pc] > 0) {
out[op++] = pc;
for (; run > 255; run -= 255) out[op++] = 255;
out[op++] = run - 1;
run = 1;
} else
for (++run; run > 1; --run) out[op++] = pc;
pc = c;
} while (c != -1);
return op;
}
static int mrled(u8 * RESTRICT in, u8 * RESTRICT out, s32 outlen, s32 maxin) {
s32 op = 0, ip = 0;
s32 c, pc = -1;
s32 t[256] = { 0 };
s32 run = 0;
if (maxin < 32) return 1;
for (s32 i = 0; i < 32; ++i) {
c = in[ip++];
for (s32 j = 0; j < 8; ++j) t[i * 8 + j] = (c >> j) & 1;
}
while (op < outlen && ip < maxin) {
c = in[ip++];
if (t[c]) {
for (run = 0; ip < maxin && (pc = in[ip++]) == 255; run += 255)
;
run += pc + 1;
for (; run > 0 && op < outlen; --run) out[op++] = c;
} else
out[op++] = c;
}
return op != outlen;
}
/* The entropy coder. Uses an arithmetic coder implementation outlined in Matt Mahoney's DCE. */
typedef struct {
/* Input/output. */
u8 *in_queue, *out_queue;
s32 input_ptr, output_ptr, input_max;
/* C0, C1 - used for making the initial prediction, C2 used for an APM with a slightly low
learning rate (6) and 512 contexts. kanzi merges C0 and C1, uses slightly different
counter initialisation code and prediction code which from my tests tends to be suboptimal. */
u16 C0[256], C1[256][256], C2[512][17];
} state;
#define write_out(s, c) (s)->out_queue[(s)->output_ptr++] = (c)
#define read_in(s) ((s)->input_ptr < (s)->input_max ? (s)->in_queue[(s)->input_ptr++] : -1)
#define update0(p, x) (p) = ((p) - ((p) >> x))
#define update1(p, x) (p) = ((p) + (((p) ^ 65535) >> x))
static void begin(state * s) {
prefetch(s);
for (int i = 0; i < 256; i++) s->C0[i] = 1 << 15;
for (int i = 0; i < 256; i++)
for (int j = 0; j < 256; j++) s->C1[i][j] = 1 << 15;
for (int i = 0; i < 2; i++)
for (int j = 0; j < 256; j++)
for (int k = 0; k < 17; k++) s->C2[2 * j + i][k] = (k << 12) - (k == 16); // Firm difference from stdpack.
}
static void encode_bytes(state * s, u8 * buf, s32 size) {
/* Arithmetic coding, detecting runs of characters in the file */
u32 high = 0xFFFFFFFF, low = 0, c1 = 0, c2 = 0, run = 0;
for (s32 i = 0; i < size; i++) {
u8 c = buf[i];
if (c1 == c2)
++run;
else
run = 0;
const int f = run > 2;
int ctx = 1;
while (ctx < 256) {
const int p0 = s->C0[ctx];
const int p1 = s->C1[c1][ctx];
const int p2 = s->C1[c2][ctx];
const int p = ((p0 + p1) * 7 + p2 + p2) >> 4;
const int j = p >> 12;
const int x1 = s->C2[2 * ctx + f][j];
const int x2 = s->C2[2 * ctx + f][j + 1];
const int ssep = x1 + (((x2 - x1) * (p & 4095)) >> 12);
if (c & 128) {
high = low + (((u64)(high - low) * (ssep * 3 + p)) >> 18);
while ((low ^ high) < (1 << 24)) {
write_out(s, low >> 24);
low <<= 8;
high = (high << 8) + 0xFF;
}
update1(s->C0[ctx], 2);
update1(s->C1[c1][ctx], 4);
update1(s->C2[2 * ctx + f][j], 6);
update1(s->C2[2 * ctx + f][j + 1], 6);
ctx += ctx + 1;
} else {
low += (((u64)(high - low) * (ssep * 3 + p)) >> 18) + 1;
// Write identical bits.
while ((low ^ high) < (1 << 24)) {
write_out(s, low >> 24); // Same as high >> 24
low <<= 8;
high = (high << 8) + 0xFF;
}
update0(s->C0[ctx], 2);
update0(s->C1[c1][ctx], 4);
update0(s->C2[2 * ctx + f][j], 6);
update0(s->C2[2 * ctx + f][j + 1], 6);
ctx += ctx;
}
c <<= 1;
}
c2 = c1;
c1 = ctx & 255;
}
write_out(s, low >> 24);
low <<= 8;
write_out(s, low >> 24);
low <<= 8;
write_out(s, low >> 24);
low <<= 8;
write_out(s, low >> 24);
low <<= 8;
}
static void decode_bytes(state * s, u8 * c, s32 size) {
u32 high = 0xFFFFFFFF, low = 0, c1 = 0, c2 = 0, run = 0, code = 0;
code = (code << 8) + read_in(s);
code = (code << 8) + read_in(s);
code = (code << 8) + read_in(s);
code = (code << 8) + read_in(s);
for (s32 i = 0; i < size; i++) {
if (c1 == c2)
++run;
else
run = 0;
const int f = run > 2;
int ctx = 1;
while (ctx < 256) {
const int p0 = s->C0[ctx];
const int p1 = s->C1[c1][ctx];
const int p2 = s->C1[c2][ctx];
const int p = ((p0 + p1) * 7 + p2 + p2) >> 4;
const int j = p >> 12;
const int x1 = s->C2[2 * ctx + f][j];
const int x2 = s->C2[2 * ctx + f][j + 1];
const int ssep = x1 + (((x2 - x1) * (p & 4095)) >> 12);
const u32 mid = low + (((u64)(high - low) * (ssep * 3 + p)) >> 18);
const u8 bit = code <= mid;
if (bit)
high = mid;
else
low = mid + 1;
while ((low ^ high) < (1 << 24)) {
low <<= 8;
high = (high << 8) + 255;
code = (code << 8) + read_in(s);
}
if (bit) {
update1(s->C0[ctx], 2);
update1(s->C1[c1][ctx], 4);
update1(s->C2[2 * ctx + f][j], 6);
update1(s->C2[2 * ctx + f][j + 1], 6);
ctx += ctx + 1;
} else {
update0(s->C0[ctx], 2);
update0(s->C1[c1][ctx], 4);
update0(s->C2[2 * ctx + f][j], 6);
update0(s->C2[2 * ctx + f][j + 1], 6);
ctx += ctx;
}
}
c2 = c1;
c[i] = c1 = ctx & 255;
}
}
/* Public API. */
struct bz3_state {
u8 * swap_buffer;
s32 block_size;
s32 *sais_array, *lzp_lut;
state * cm_state;
s8 last_error;
};
BZIP3_API s8 bz3_last_error(struct bz3_state * state) { return state->last_error; }
BZIP3_API const char * bz3_version(void) { return VERSION; }
BZIP3_API size_t bz3_bound(size_t input_size) { return input_size + input_size / 50 + 32; }
BZIP3_API const char * bz3_strerror(struct bz3_state * state) {
switch (state->last_error) {
case BZ3_OK:
return "No error";
case BZ3_ERR_OUT_OF_BOUNDS:
return "Data index out of bounds";
case BZ3_ERR_BWT:
return "Burrows-Wheeler transform failed";
case BZ3_ERR_CRC:
return "CRC32 check failed";
case BZ3_ERR_MALFORMED_HEADER:
return "Malformed header";
case BZ3_ERR_TRUNCATED_DATA:
return "Truncated data";
case BZ3_ERR_DATA_TOO_BIG:
return "Too much data";
case BZ3_ERR_DATA_SIZE_TOO_SMALL:
return "Size of buffer `buffer_size` passed to the block decoder (bz3_decode_block) is too small. See function docs for details.";
default:
return "Unknown error";
}
}
BZIP3_API struct bz3_state * bz3_new(s32 block_size) {
if (block_size < KiB(65) || block_size > MiB(511)) {
return NULL;
}
struct bz3_state * bz3_state = malloc(sizeof(struct bz3_state));
if (!bz3_state) {
return NULL;
}
bz3_state->cm_state = malloc(sizeof(state));
bz3_state->swap_buffer = malloc(bz3_bound(block_size));
bz3_state->sais_array = malloc(BWT_BOUND(block_size) * sizeof(s32));
memset(bz3_state->sais_array, 0, sizeof(s32) * BWT_BOUND(block_size));
bz3_state->lzp_lut = calloc(1 << LZP_DICTIONARY, sizeof(s32));
if (!bz3_state->cm_state || !bz3_state->swap_buffer || !bz3_state->sais_array || !bz3_state->lzp_lut) {
if (bz3_state->cm_state) free(bz3_state->cm_state);
if (bz3_state->swap_buffer) free(bz3_state->swap_buffer);
if (bz3_state->sais_array) free(bz3_state->sais_array);
if (bz3_state->lzp_lut) free(bz3_state->lzp_lut);
free(bz3_state);
return NULL;
}
bz3_state->block_size = block_size;
bz3_state->last_error = BZ3_OK;
return bz3_state;
}
BZIP3_API void bz3_free(struct bz3_state * state) {
free(state->swap_buffer);
free(state->sais_array);
free(state->cm_state);
free(state->lzp_lut);
free(state);
}
#define swap(x, y) \
{ \
u8 * tmp = x; \
x = y; \
y = tmp; \
}
BZIP3_API s32 bz3_encode_block(struct bz3_state * state, u8 * buffer, s32 data_size) {
u8 *b1 = buffer, *b2 = state->swap_buffer;
if (data_size > state->block_size) {
state->last_error = BZ3_ERR_DATA_TOO_BIG;
return -1;
}
u32 crc32 = crc32sum(1, b1, data_size);
// Ignore small blocks. They won't benefit from the entropy coding step.
if (data_size < 64) {
memmove(b1 + 8, b1, data_size);
write_neutral_s32(b1, crc32);
write_neutral_s32(b1 + 4, -1);
return data_size + 8;
}
// Back to front:
// bit 1: lzp | no lzp
// bit 2: srt | no srt
s8 model = 0;
s32 lzp_size, rle_size;
rle_size = mrlec(b1, data_size, b2);
if (rle_size < data_size) {
swap(b1, b2);
data_size = rle_size;
model |= 4;
}
lzp_size = lzp_compress(b1, b2, data_size, state->lzp_lut);
if (lzp_size > 0 && lzp_size < data_size) {
swap(b1, b2);
data_size = lzp_size;
model |= 2;
}
s32 bwt_idx = libsais_bwt(b1, b2, state->sais_array, data_size, 0, NULL);
if (bwt_idx < 0) {
state->last_error = BZ3_ERR_BWT;
return -1;
}
// Compute the amount of overhead dwords.
s32 overhead = 2; // CRC32 + BWT index
if (model & 2) overhead++; // LZP
if (model & 4) overhead++; // RLE
begin(state->cm_state);
state->cm_state->out_queue = b1 + overhead * 4 + 1;
state->cm_state->output_ptr = 0;
encode_bytes(state->cm_state, b2, data_size);
data_size = state->cm_state->output_ptr;
// Write the header. Starting with common entries.
write_neutral_s32(b1, crc32);
write_neutral_s32(b1 + 4, bwt_idx);
b1[8] = model;
s32 p = 0;
if (model & 2) write_neutral_s32(b1 + 9 + 4 * p++, lzp_size);
if (model & 4) write_neutral_s32(b1 + 9 + 4 * p++, rle_size);
state->last_error = BZ3_OK;
if (b1 != buffer) memcpy(buffer, b1, data_size + overhead * 4 + 1);
return data_size + overhead * 4 + 1;
}
BZIP3_API s32 bz3_decode_block(struct bz3_state * state, u8 * buffer, size_t buffer_size, s32 compressed_size, s32 orig_size) {
// Need minimum bytes for initial header, and compressed_size needs to fit within claimed buffer size.
if (buffer_size < 9 || buffer_size < compressed_size) {
state->last_error = BZ3_ERR_DATA_SIZE_TOO_SMALL;
return -1;
}
// Read the header.
u32 crc32 = read_neutral_s32(buffer);
s32 bwt_idx = read_neutral_s32(buffer + 4);
if (compressed_size > bz3_bound(state->block_size) || compressed_size < 0) {
state->last_error = BZ3_ERR_MALFORMED_HEADER;
return -1;
}
if (bwt_idx == -1) {
if (compressed_size - 8 > 64 || compressed_size < 8) {
state->last_error = BZ3_ERR_MALFORMED_HEADER;
return -1;
}
// Ensure there's enough space for the raw copied data.
if (compressed_size - 8 > buffer_size) {
state->last_error = BZ3_ERR_DATA_SIZE_TOO_SMALL;
return -1;
}
memmove(buffer, buffer + 8, compressed_size - 8);
if (crc32sum(1, buffer, compressed_size - 8) != crc32) {
state->last_error = BZ3_ERR_CRC;
return -1;
}
return compressed_size - 8;
}
s8 model = buffer[8];
// Ensure we have sufficient bytes for the rle/lzp sizes.
size_t needed_header_size = 9 + ((model & 2) * 4) + ((model & 4) * 4);
if (buffer_size < needed_header_size) {
state->last_error = BZ3_ERR_DATA_SIZE_TOO_SMALL;
return -1;
}
s32 lzp_size = -1, rle_size = -1, p = 0;
if (model & 2) lzp_size = read_neutral_s32(buffer + 9 + 4 * p++);
if (model & 4) rle_size = read_neutral_s32(buffer + 9 + 4 * p++);
p += 2;
compressed_size -= p * 4 + 1;
if (((model & 2) && (lzp_size > bz3_bound(state->block_size) || lzp_size < 0)) ||
((model & 4) && (rle_size > bz3_bound(state->block_size) || rle_size < 0))) {
state->last_error = BZ3_ERR_MALFORMED_HEADER;
return -1;
}
if (orig_size > bz3_bound(state->block_size) || orig_size < 0) {
state->last_error = BZ3_ERR_MALFORMED_HEADER;
return -1;
}
// Size that undoing BWT+BCM should decompress into.
s32 size_before_bwt;
if (model & 2)
size_before_bwt = lzp_size;
else if (model & 4)
size_before_bwt = rle_size;
else
size_before_bwt = orig_size;
// Note(sewer): It's technically valid within the spec to create a bzip3 block
// where the size after LZP/RLE is larger than the original input. Some earlier encoders
// even (mistakenly?) were able to do this.
if (!bz3_check_buffer_size(buffer_size, lzp_size, rle_size, orig_size)) {
state->last_error = BZ3_ERR_DATA_SIZE_TOO_SMALL;
return -1;
}
// Decode the data.
u8 *b1 = buffer, *b2 = state->swap_buffer;
begin(state->cm_state);
state->cm_state->in_queue = b1 + p * 4 + 1;
state->cm_state->input_ptr = 0;
state->cm_state->input_max = compressed_size;
decode_bytes(state->cm_state, b2, size_before_bwt);
swap(b1, b2);
if (bwt_idx > size_before_bwt) {
state->last_error = BZ3_ERR_MALFORMED_HEADER;
return -1;
}
// Undo BWT
memset(state->sais_array, 0, sizeof(s32) * BWT_BOUND(state->block_size));
memset(b2, 0, size_before_bwt); // buffer b2, swap b1
if (libsais_unbwt(b1, b2, state->sais_array, size_before_bwt, NULL, bwt_idx) < 0) {
state->last_error = BZ3_ERR_BWT;
return -1;
}
swap(b1, b2);
s32 size_src = size_before_bwt;
// Undo LZP
if (model & 2) {
size_src = lzp_decompress(b1, b2, lzp_size, bz3_bound(state->block_size), state->lzp_lut);
if (size_src == -1) {
state->last_error = BZ3_ERR_CRC;
return -1;
}
// SAFETY(sewer): An attacker formed bzip3 data which decompresses as valid lzp.
// The headers above were set to ones that pass validation (size within bounds), but the
// data itself tries to escape buffer_size. Don't allow it to.
if (size_src > buffer_size) {
state->last_error = BZ3_ERR_DATA_SIZE_TOO_SMALL;
return -1;
}
swap(b1, b2);
}
if (model & 4) {
// SAFETY: mrled is capped at orig_size, which is in bounds.
int err = mrled(b1, b2, orig_size, size_src);
if (err) {
state->last_error = BZ3_ERR_CRC;
return -1;
}
size_src = orig_size;
swap(b1, b2);
}
state->last_error = BZ3_OK;
if (size_src > state->block_size || size_src < 0) {
state->last_error = BZ3_ERR_MALFORMED_HEADER;
return -1;
}
if (b1 != buffer) memcpy(buffer, b1, size_src);
if (crc32 != crc32sum(1, buffer, size_src)) {
state->last_error = BZ3_ERR_CRC;
return -1;
}
return size_src;
}
#undef swap
#ifdef PTHREAD
#include <pthread.h>
typedef struct {
struct bz3_state * state;
u8 * buffer;
s32 size;
} encode_thread_msg;
typedef struct {
struct bz3_state * state;
u8 * buffer;
size_t buffer_size;
s32 size;
s32 orig_size;
} decode_thread_msg;
static void * bz3_init_encode_thread(void * _msg) {
encode_thread_msg * msg = _msg;
msg->size = bz3_encode_block(msg->state, msg->buffer, msg->size);
pthread_exit(NULL);
return NULL; // unreachable
}
static void * bz3_init_decode_thread(void * _msg) {
decode_thread_msg * msg = _msg;
bz3_decode_block(msg->state, msg->buffer, msg->buffer_size, msg->size, msg->orig_size);
pthread_exit(NULL);
return NULL; // unreachable
}
BZIP3_API void bz3_encode_blocks(struct bz3_state * states[], u8 * buffers[], s32 sizes[], s32 n) {
encode_thread_msg messages[n];
pthread_t threads[n];
for (s32 i = 0; i < n; i++) {
messages[i].state = states[i];
messages[i].buffer = buffers[i];
messages[i].size = sizes[i];
pthread_create(&threads[i], NULL, bz3_init_encode_thread, &messages[i]);
}
for (s32 i = 0; i < n; i++) pthread_join(threads[i], NULL);
for (s32 i = 0; i < n; i++) sizes[i] = messages[i].size;
}
BZIP3_API void bz3_decode_blocks(struct bz3_state * states[], u8 * buffers[], size_t buffer_sizes[], s32 sizes[], s32 orig_sizes[], s32 n) {
decode_thread_msg messages[n];
pthread_t threads[n];
for (s32 i = 0; i < n; i++) {
messages[i].state = states[i];
messages[i].buffer = buffers[i];
messages[i].buffer_size = buffer_sizes[i];
messages[i].size = sizes[i];
messages[i].orig_size = orig_sizes[i];
pthread_create(&threads[i], NULL, bz3_init_decode_thread, &messages[i]);
}
for (s32 i = 0; i < n; i++) pthread_join(threads[i], NULL);
}
#endif
/* High level API implementations. */
BZIP3_API int bz3_compress(u32 block_size, const u8 * const in, u8 * out, size_t in_size, size_t * out_size) {
if (block_size > in_size) block_size = in_size + 16;
block_size = block_size <= KiB(65) ? KiB(65) : block_size;
struct bz3_state * state = bz3_new(block_size);
if (!state) return BZ3_ERR_INIT;
u8 * compression_buf = malloc(bz3_bound(block_size));
if (!compression_buf) {
bz3_free(state);
return BZ3_ERR_INIT;
}
size_t buf_max = *out_size;
*out_size = 0;
u32 n_blocks = in_size / block_size;
if (in_size % block_size) n_blocks++;
if (buf_max < 13 || buf_max < bz3_bound(in_size)) {
bz3_free(state);
free(compression_buf);
return BZ3_ERR_DATA_TOO_BIG;
}
out[0] = 'B';
out[1] = 'Z';
out[2] = '3';
out[3] = 'v';
out[4] = '1';
write_neutral_s32(out + 5, block_size);
write_neutral_s32(out + 9, n_blocks);
*out_size += 13;
// Compress and write the blocks.
size_t in_offset = 0;
for (u32 i = 0; i < n_blocks; i++) {
s32 size = block_size;
if (i == n_blocks - 1) size = in_size % block_size;
memcpy(compression_buf, in + in_offset, size);
s32 out_size_block = bz3_encode_block(state, compression_buf, size);
if (bz3_last_error(state) != BZ3_OK) {
s8 last_error = state->last_error;
bz3_free(state);
free(compression_buf);
return last_error;
}
memcpy(out + *out_size + 8, compression_buf, out_size_block);
write_neutral_s32(out + *out_size, out_size_block);
write_neutral_s32(out + *out_size + 4, size);
*out_size += out_size_block + 8;
in_offset += size;
}
bz3_free(state);
free(compression_buf);
return BZ3_OK;
}
BZIP3_API int bz3_decompress(const uint8_t * in, uint8_t * out, size_t in_size, size_t * out_size) {
if (in_size < 13) return BZ3_ERR_MALFORMED_HEADER;
if (in[0] != 'B' || in[1] != 'Z' || in[2] != '3' || in[3] != 'v' || in[4] != '1') {
return BZ3_ERR_MALFORMED_HEADER;
}
u32 block_size = read_neutral_s32(in + 5);
u32 n_blocks = read_neutral_s32(in + 9);
in_size -= 13;
in += 13;
struct bz3_state * state = bz3_new(block_size);
if (!state) return BZ3_ERR_INIT;
size_t compression_buf_size = bz3_bound(block_size);
u8 * compression_buf = malloc(compression_buf_size);
if (!compression_buf) {
bz3_free(state);
return BZ3_ERR_INIT;
}
size_t buf_max = *out_size;
*out_size = 0;
for (u32 i = 0; i < n_blocks; i++) {
if (in_size < 8) {
malformed_header:
bz3_free(state);
free(compression_buf);
return BZ3_ERR_MALFORMED_HEADER;
}
s32 size = read_neutral_s32(in);
if (size < 0 || size > block_size) goto malformed_header;
if (in_size < size + 8) {
bz3_free(state);
free(compression_buf);
return BZ3_ERR_TRUNCATED_DATA;
}
s32 orig_size = read_neutral_s32(in + 4);
if (orig_size < 0) goto malformed_header;
if (buf_max < *out_size + orig_size) {
bz3_free(state);
free(compression_buf);
return BZ3_ERR_DATA_TOO_BIG;
}
memcpy(compression_buf, in + 8, size);
bz3_decode_block(state, compression_buf, compression_buf_size, size, orig_size);
if (bz3_last_error(state) != BZ3_OK) {
s8 last_error = state->last_error;
bz3_free(state);
free(compression_buf);
return last_error;
}
memcpy(out + *out_size, compression_buf, orig_size);
*out_size += orig_size;
in += size + 8;
in_size -= size + 8;
}
bz3_free(state);
return BZ3_OK;
}
BZIP3_API size_t bz3_min_memory_needed(int32_t block_size) {
if (block_size < KiB(65) || block_size > MiB(511)) {
return 0;
}