-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsoftmax_accuracy.py
56 lines (42 loc) · 1.59 KB
/
softmax_accuracy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
'''
Example shows how to compute combined softmax for multilabel multivalue setting.
'''
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import numpy as np
# in one output (6 dim vector) we want to encode 2 features and level of its expression
# each feature is represented by 3 values (low, mid, high)
# eg. in a multilabel classification problem we want to encode information that each label
# could have 3 stages (low,mid, high)
np_output1 = np.array([0.99, 0.005, 0.005, 0.1, 0.1, 0.8 ], dtype=np.float32)
np_output2 = np.array([0.1, 0.7, 0.2, 0.8, 0.05, 0.15 ], dtype=np.float32)
output1 = torch.tensor([ np_output1], requires_grad=True)
output2 = torch.tensor([np_output2], requires_grad=True)
output = torch.cat([output1, output2])
print(output)
# our target is encoded for crossentropy, contains index number
# index 0 coressponds to 0.99, idex 2 coresponds to 0.8, second row accordingly for output2
np_target = np.array([[0, 2], [1,0]], dtype=np.int64)
cls_target = torch.from_numpy(np_target)
# batch_output = output
# print(batch_output)
# softmaxed = F.softmax(batch_output)
# print(softmaxed)
# print(softmaxed.sum(dim=1))
batch_output = output.view(-1, 2, 3)
print(batch_output)
softmaxed = F.softmax(batch_output, dim=2)
print(softmaxed)
_, positions = softmaxed.max(dim=2)
print(positions,cls_target)
correct = (cls_target== positions)
print(correct)
acc = correct.sum()/len(correct)
####
# batch_output = output.view(-1, 2, 3)
# batch_output = batch_output.transpose(1,2)
# print(batch_output)
# softmaxed = F.softmax(batch_output)
# print(softmaxed)