-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathrun_distillation_v3.py
410 lines (378 loc) · 20.3 KB
/
run_distillation_v3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
import logging
import os
from dataclasses import dataclass, field
from typing import Dict, List, Optional, Union
from functools import partial
from pathlib import Path
from tqdm import tqdm
from shutil import rmtree
import numpy as np
import torch
import torch.nn as nn
from accelerate import Accelerator
from accelerate.logging import get_logger
from datasets import utils, load_dataset, concatenate_datasets
from huggingface_hub import Repository, create_repo
from torch.utils.data import DataLoader
from transformers import (
WhisperConfig, WhisperForConditionalGeneration, WhisperProcessor, WhisperTokenizerFast, WhisperFeatureExtractor,
set_seed, AddedToken, HfArgumentParser, Seq2SeqTrainingArguments,
)
from transformers.modeling_outputs import BaseModelOutput
from transformers.utils import check_min_version
from transformers.utils.versions import require_version
# https://stackoverflow.com/questions/71692354/facing-ssl-error-with-huggingface-pretrained-models
os.environ['CURL_CA_BUNDLE'] = ''
# disable warning message
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.34.0.dev0")
require_version("datasets>=2.14.6", "To fix: `pip install --upgrade datasets`")
logger = get_logger(__name__)
@dataclass
class ModelArguments:
model_name_or_path: str = field(metadata={"help": "Student model."})
teacher_model_name_or_path: str = field(metadata={"help": "Teacher model."})
attn_implementation: str = field(default="sdpa", metadata={"help": "Attention implementation."})
@dataclass
class DataTrainingArguments:
dataset_name_1: str = field(metadata={"help": "The name of the training dataset to use."})
dataset_split_name_1: str = field(metadata={"help": "The name of the training data split to use."})
dataset_config_name_1: str = field(metadata={"help": "The configuration name of the training dataset to use."})
dataset_feature_1: str = field(metadata={"help": "The feature names for the labels."})
dataset_language_1: str = field(metadata={"help": "Language for multilingual distillation."})
dataset_task_1: str = field(metadata={"help": "Task, either `transcribe` for speech recognition or `translate` for speech translation."})
dataset_timestamp_1: str = field(metadata={"help": "Whether or not to predict timestamps."})
dataset_kl_1: str = field(metadata={"help": "Whether or not to apply KL loss."})
dataset_name_2: str = field(metadata={"help": "The name of the training dataset to use."})
dataset_split_name_2: str = field(metadata={"help": "The name of the training data split to use."})
dataset_config_name_2: str = field(metadata={"help": "The configuration name of the training dataset to use."})
dataset_feature_2: str = field(metadata={"help": "The feature names for the labels."})
dataset_language_2: str = field(metadata={"help": "Language for multilingual distillation."})
dataset_task_2: str = field(metadata={"help": "Task, either `transcribe` for speech recognition or `translate` for speech translation."})
dataset_timestamp_2: str = field(metadata={"help": "Whether or not to predict timestamps."})
dataset_kl_2: str = field(metadata={"help": "Whether or not to apply KL loss."})
max_label_length: int = field(metadata={"help": "Truncate transcriptions that are longer `max_label_length`."})
num_workers: Optional[int] = field(default=None, metadata={"help": "The number of processes for the preprocessing."})
wandb_project: str = field(default="distil-whisper", metadata={"help": "The name of the wandb project."})
@dataclass
class DistillationTrainingArguments(Seq2SeqTrainingArguments):
temperature: float = field(
default=2.0,
metadata={"help": "Temperature to anneal the logits when computing the softmax."}
)
kl_weight: float = field(
default=1.0,
metadata={"help": "Weighting assigned to the MSE loss in the KD formulation."},
)
@dataclass
class DataCollatorSpeechSeq2SeqWithPadding:
model_input_name: str
feature_extractor: WhisperFeatureExtractor
tokenizer: WhisperTokenizerFast
decoder_start_token_id: int
max_target_length: int
feature: List[str]
def __call__(self, features: List[Dict[str, Union[List[int], np.ndarray]]]):
input_features = {self.model_input_name: [feature[self.model_input_name] for feature in features]}
batch = self.feature_extractor.pad(input_features, padding="longest", return_tensors="pt")
for k in self.feature:
labels_batch = self.tokenizer.pad(
{"input_ids": [feature[k] for feature in features]},
max_length=self.max_target_length,
padding="max_length",
return_tensors="pt"
)
# shift labels to the right to get decoder input ids
labels = labels_batch["input_ids"]
batch[f"decoder_input_ids/{k}"] = labels[:, :-1]
labels = labels[:, 1:]
labels_mask = labels_batch.attention_mask[:, 1:]
# replace padding with -100 to ignore correctly when computing the loss
labels = labels.masked_fill(labels_mask.ne(1), -100)
# replace initial prompt tokens with -100 to ignore correctly when computing the loss
bos_index = torch.argmax((labels == self.decoder_start_token_id).long(), dim=1)
bos_index = torch.where(bos_index > 0, bos_index + 1, bos_index)
batch[f"labels/{k}"] = torch.where(torch.arange(labels.shape[1]) < bos_index[:, None], -100, labels)
return batch
def get_parameter_names(model, forbidden_layer_types, forbidden_module):
""" Returns the names of the model parameters that are not inside a forbidden layer or forbidden module.
Can be used to get a subset of parameter names for decay masks, or to exclude parameters from an optimiser
"""
result = []
for name, child in model.named_children():
result += [
f"{name}.{n}"
for n in get_parameter_names(child, forbidden_layer_types, forbidden_module)
if not (
isinstance(child, tuple(forbidden_layer_types))
or (child in tuple(forbidden_module) if forbidden_module is not None else False)
)
]
# Add model specific parameters (defined with nn.Parameter) since they are not in any child.
result += list(model._parameters.keys())
return result
def main():
# 1. Parse input arguments, keep distinct sets of args, for cleaner separation of model/data/training related args.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, DistillationTrainingArguments))
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
set_seed(training_args.seed)
# 2. Initialize the accelerator and basic logging.
accelerator = Accelerator(
gradient_accumulation_steps=training_args.gradient_accumulation_steps,
mixed_precision="bf16",
log_with=training_args.report_to,
project_dir=training_args.output_dir,
)
accelerator.init_trackers(project_name=data_args.wandb_project)
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, "
f"distributed training: {training_args.parallel_mode.value == 'distributed'}."
)
if accelerator.is_local_main_process:
utils.logging.set_verbosity_warning()
else:
utils.logging.set_verbosity_error()
logger.info(f"Training/evaluation parameters {training_args}")
# 3. Handle the repository creation
if accelerator.is_main_process:
repo_name = Path(training_args.output_dir).absolute().name
repo_id = create_repo(repo_name, exist_ok=True, token=training_args.hub_token).repo_id
repo = Repository(training_args.output_dir, clone_from=repo_id, token=training_args.hub_token)
with open(os.path.join(training_args.output_dir, ".gitignore"), "w+") as gitignore:
if "wandb" not in gitignore:
gitignore.write("wandb\n")
accelerator.wait_for_everyone()
# 4. Load pretrained model, tokenizer, and feature extractor
config = WhisperConfig.from_pretrained(model_args.model_name_or_path)
processor = WhisperProcessor.from_pretrained(training_args.output_dir)
# override timestamp tokens until tokenizer issues are fixed in transformers
timestamps = [AddedToken("<|%.2f|>" % (i * 0.02), lstrip=False, rstrip=False) for i in range(1500 + 1)]
processor.tokenizer.add_tokens(timestamps)
teacher_model = WhisperForConditionalGeneration.from_pretrained(
model_args.teacher_model_name_or_path,
low_cpu_mem_usage=True,
torch_dtype=torch.bfloat16,
attn_implementation=model_args.attn_implementation,
)
teacher_model.generation_config.update(**{"max_length": data_args.max_label_length})
assert hasattr(teacher_model.generation_config, "is_multilingual") and teacher_model.generation_config.is_multilingual
student_model = WhisperForConditionalGeneration.from_pretrained(
model_args.model_name_or_path,
config=config,
low_cpu_mem_usage=True,
torch_dtype=torch.bfloat16,
attn_implementation=model_args.attn_implementation,
)
assert hasattr(student_model.generation_config, "is_multilingual") and student_model.generation_config.is_multilingual
assert student_model.config.d_model == teacher_model.config.d_model
assert student_model.config.decoder_start_token_id and teacher_model.config.decoder_start_token_id
decoder_start_token_id = student_model.config.decoder_start_token_id # <|startoftranscript|>
# enable gradient checkpointing if necessary
if training_args.gradient_checkpointing:
student_model.gradient_checkpointing_enable()
# freeze student encoder if necessary
student_model.freeze_encoder()
student_model.model.encoder.gradient_checkpointing = False
student_model.generation_config.update(**{"max_length": data_args.max_label_length})
# 5. Define optimizer
decay_parameters = get_parameter_names(
student_model, [nn.LayerNorm], forbidden_module=[student_model.model.encoder]
)
decay_parameters = [name for name in decay_parameters if "bias" not in name]
optimizer_grouped_parameters = [
{
"params": [param for name, param in student_model.named_parameters() if name in decay_parameters],
"weight_decay": training_args.weight_decay,
},
{
"params": [param for name, param in student_model.named_parameters() if name not in decay_parameters],
"weight_decay": 0.0,
},
]
optimizer = torch.optim.AdamW(
params=optimizer_grouped_parameters,
lr=training_args.learning_rate,
betas=(training_args.adam_beta1, training_args.adam_beta2),
eps=training_args.adam_epsilon,
)
# 6. Prepare everything with accelerate
student_model, teacher_model, optimizer = accelerator.prepare(student_model, teacher_model, optimizer)
student_model.train()
teacher_model.eval()
# 7. Preprocessing the datasets
def get_dateset(name, split_name, config_name):
return concatenate_datasets(
[load_dataset(name, n, split=split_name, trust_remote_code=True) for n in config_name.split(",")]
)
def format_dataset_feature(column, language, task, ts, kl):
column = column.split(",")
language = language.split(",")
task = task.split(",")
ts = [i == "true" for i in ts.split(",")]
kl = [i == "true" for i in kl.split(",")]
assert len(column) == len(task) == len(language) == len(ts) == len(kl)
return {s: {"la": l, "col": c, "ts": t, "kl": k} for c, l, s, t, k in zip(column, language, task, ts, kl)}
collator = partial(
DataCollatorSpeechSeq2SeqWithPadding,
model_input_name=processor.model_input_names[0], # "input_features"
feature_extractor=processor.feature_extractor,
tokenizer=processor.tokenizer,
decoder_start_token_id=decoder_start_token_id,
max_target_length=data_args.max_label_length,
)
dataset_1 = get_dateset(data_args.dataset_name_1, data_args.dataset_split_name_1, data_args.dataset_config_name_1)
feature_1 = format_dataset_feature(
data_args.dataset_feature_1,
data_args.dataset_language_1,
data_args.dataset_task_1,
data_args.dataset_timestamp_1,
data_args.dataset_kl_1
)
dataset_collator_1 = collator(feature=[i["col"] for i in feature_1.values()])
dataset_2 = get_dateset(data_args.dataset_name_2, data_args.dataset_split_name_2, data_args.dataset_config_name_2)
feature_2 = format_dataset_feature(
data_args.dataset_feature_2,
data_args.dataset_language_2,
data_args.dataset_task_2,
data_args.dataset_timestamp_2,
data_args.dataset_kl_2
)
dataset_collator_2 = collator(feature=[i["col"] for i in feature_2.values()])
accelerator.wait_for_everyone()
# 8. Model distillation.
dataset_size = min(len(dataset_1), len(dataset_2)) * 2
train_batch_size = training_args.per_device_train_batch_size * accelerator.num_processes
steps_per_epoch = dataset_size // (train_batch_size * training_args.gradient_accumulation_steps)
total_train_steps = int(steps_per_epoch * training_args.num_train_epochs)
logger.info("***** Running training *****")
logger.info(f" Instantaneous batch size per device = {training_args.per_device_train_batch_size}")
logger.info(f" Gradient accumulation steps = {training_args.gradient_accumulation_steps}")
logger.info(f" Effective batch size (w. parallel & distributed) = {train_batch_size * training_args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {total_train_steps}")
p_bar = tqdm(range(total_train_steps), desc="Training", position=0, disable=not accelerator.is_local_main_process)
def kl_divergence(teacher_logit, student_logit, labels):
# Rescale distribution by temperature to ensure gradients scale correctly.
teacher_distribution = nn.functional.softmax(teacher_logit / training_args.temperature, dim=-1)
# Log softmax of student predictions for numerical stability.
student_distribution = nn.functional.log_softmax(student_logit / training_args.temperature, dim=-1)
kl_loss = nn.KLDivLoss(reduction="none")
divergence = kl_loss(student_distribution, teacher_distribution)
# ignore padded tokens from divergence, i.e. where labels are not set to -100
padding_mask = labels >= 0
padding_mask = padding_mask.unsqueeze(-1)
divergence = divergence * padding_mask
# take the average over the mini-batch
kl_loss = divergence.sum() / padding_mask.sum()
# KL-divergence loss (scaled by temperature)
return kl_loss * training_args.temperature ** 2
def train_step(batch_1, batch_2):
# CE loss.
metrics = dict()
for feature, batch in zip([feature_1, feature_2], [batch_1, batch_2]):
hidden = None
for k, v in feature.items():
gen_config = {"language": v["la"], "task": k, "return_timestamps": v["ts"]}
accelerator.unwrap_model(student_model).generation_config.update(**gen_config)
if hidden is None:
student_outputs = student_model(
input_features=batch["input_features"],
labels=batch[f'labels/{v["col"]}'],
decoder_input_ids=batch[f'decoder_input_ids/{v["col"]}']
)
hidden = BaseModelOutput(student_outputs.encoder_last_hidden_state)
else:
student_outputs = student_model(
encoder_outputs=hidden,
labels=batch[f'labels/{v["col"]}'],
decoder_input_ids=batch[f'decoder_input_ids/{v["col"]}']
)
metrics[f"ce_loss.{k}.{v['la']}"] = student_outputs.loss
if v["kl"]:
# KL loss.
with torch.no_grad():
accelerator.unwrap_model(teacher_model).generation_config.update(**gen_config)
teacher_outputs = teacher_model(encoder_outputs=hidden, labels=batch[f'labels/{v["col"]}'])
metrics[f"kl_loss.{k}.{v['la']}"] = kl_divergence(
teacher_outputs.logits, student_outputs.logits, batch[f'labels/{v["col"]}']
)
# Use Distil-Whisper formulation (fix weight of CE loss and tune KL weight, 1 as default).
ce_loss = sum(v for k, v in metrics.items() if k.startswith("ce_loss."))
kl_loss = sum(v for k, v in metrics.items() if k.startswith("kl_loss."))
metrics["loss"] = 0.8 * ce_loss + training_args.kl_weight * kl_loss
return metrics["loss"], metrics
cur_step = 0
for epoch in range(int(training_args.num_train_epochs)):
# Set up two data loaders for each dataset.
dataset_1 = dataset_1.shuffle(training_args.seed)
loader_1 = accelerator.prepare(
DataLoader(
dataset_1,
collate_fn=dataset_collator_1,
batch_size=int(training_args.per_device_train_batch_size / 2),
num_workers=training_args.dataloader_num_workers,
pin_memory=training_args.dataloader_pin_memory,
)
)
dataset_2 = dataset_2.shuffle(training_args.seed)
loader_2 = accelerator.prepare(
DataLoader(
dataset_2,
collate_fn=dataset_collator_2,
batch_size=int(training_args.per_device_train_batch_size / 2),
num_workers=training_args.dataloader_num_workers,
pin_memory=training_args.dataloader_pin_memory,
)
)
# Use the 2nd loader as an iterator
loader_2_iterator = iter(loader_2)
for single_batch_1 in loader_1:
try:
single_batch_2 = next(loader_2_iterator)
except StopIteration:
break
with accelerator.accumulate(student_model):
loss, metric = train_step(single_batch_1, single_batch_2)
accelerator.backward(loss)
if accelerator.sync_gradients:
accelerator.clip_grad_norm_(student_model.parameters(), training_args.max_grad_norm)
optimizer.step()
optimizer.zero_grad()
if accelerator.sync_gradients:
p_bar.update(1)
cur_step += 1
if accelerator.is_main_process and cur_step % training_args.logging_steps == 0:
p_bar.write(
f"[{cur_step}/{total_train_steps}]: {', '.join([f'{k}: {v.item()}' for k, v in metric.items()])}"
)
accelerator.log(metric)
accelerator.wait_for_everyone()
if accelerator.is_main_process:
logger.info(f"save_pretrained to {training_args.output_dir}")
accelerator.unwrap_model(student_model).save_pretrained(training_args.output_dir)
logger.info(f"push_to_hub to {repo_name}")
repo.push_to_hub(
commit_message=f"epoch: {epoch}, config_1: {data_args.dataset_config_name_1}, config_2: {data_args.dataset_config_name_2}",
blocking=False,
)
accelerator.wait_for_everyone()
accelerator.wait_for_everyone()
if accelerator.is_main_process:
home = os.path.expanduser('~')
for dataset_name, dataset_config in zip(
[data_args.dataset_name_1, data_args.dataset_name_2],
[data_args.dataset_config_name_1, data_args.dataset_config_name_2]
):
for c in dataset_config.split(","):
rmtree(f"{home}/.cache/huggingface/datasets/{dataset_name.replace('/', '___')}/{c}", ignore_errors=True)
rmtree(f"{home}/.cache/huggingface/hub/datasets--{dataset_name.replace('/', '--')}", ignore_errors=True)
rmtree(f"{home}/.cache/huggingface/datasets/downloads", ignore_errors=True)
logger.info("close the training job")
accelerator.end_training()
if __name__ == "__main__":
main()