-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_reg.py
158 lines (119 loc) · 5.13 KB
/
train_reg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import os
from argparse import ArgumentParser
from itertools import combinations
import pytorch_lightning as pl
import torch
from pytorch_lightning.callbacks import EarlyStopping, LearningRateMonitor, ModelCheckpoint
from pytorch_lightning.loggers import NeptuneLogger
from pytorch_lightning.tuner.tuning import Tuner
from data import LitHapticDataset
from models import (LitMLSTMfcnClassifier,
LitTSTransformerClassifier, LitMLSTMfcnRegressor, LitTSTransformerRegressor,
LitHAPTRClassifier, LitHAPTRRegressor)
def train_cls(args, algorithm):
logger = NeptuneLogger(
project='PPI/moist-reg' if args.moist else "PPI/friction-regression",
api_token=os.getenv('NEPTUNE_API_TOKEN'),
tags=["initial-classification", "hyperparam"],
log_model_checkpoints=False)
model_checkpoint = ModelCheckpoint(monitor='val/accuracy', mode='max', save_top_k=1)
trainer = pl.Trainer(max_epochs=args.max_epochs, callbacks=[
EarlyStopping(monitor="val/accuracy", min_delta=0.00, patience=50, verbose=True, mode="max"),
LearningRateMonitor(logging_interval='epoch'),
model_checkpoint],
logger=logger,
accelerator='gpu' if torch.cuda.is_available() else 'cpu',
devices=1,
log_every_n_steps=1,
enable_progress_bar=True)
data = LitHapticDataset(args.dataset_path, args.batch_size, args.moist)
model_config = algorithm['cls'].get_default_config()
model_config['num_classes'] = data.num_classes
model_config['max_len'] = data.max_len
model = algorithm['cls'](model_config)
tuner = Tuner(trainer)
tuner.scale_batch_size(model, datamodule=data)
logger.experiment['model'] = model.model_name
logger.experiment['hyperparams'] = model.config
logger.experiment['batch_size'] = data.batch_size
trainer.fit(model, data)
logger.experiment.stop()
return model_checkpoint.best_model_path, model_config
def train_reg(args, algorithm, exclude_classes, cls_ckpt_path, cls_config):
logger = NeptuneLogger(
project='PPI/moist-reg' if args.moist else "PPI/friction-regression",
api_token=os.getenv('NEPTUNE_API_TOKEN'),
tags=["regression", "combinations", "best", "v2"],
log_model_checkpoints=False)
model_checkpoint = ModelCheckpoint(monitor='val/loss', mode='min', save_top_k=1)
trainer = pl.Trainer(max_epochs=args.max_epochs, callbacks=[
EarlyStopping(monitor="val/loss", min_delta=0.00, patience=20, verbose=True, mode="min"),
LearningRateMonitor(logging_interval='epoch'),
model_checkpoint],
logger=logger,
accelerator='gpu' if torch.cuda.is_available() else 'cpu',
devices=1,
log_every_n_steps=1)
data = LitHapticDataset(args.dataset_path, args.batch_size, args.moist, cls=False, exclude_classes=exclude_classes)
model_config = algorithm['cls'].get_default_config()
model_config['num_classes'] = data.num_classes
model_config['max_len'] = data.max_len
model = algorithm['reg'](model_config)
model.load_cls_state(cls_ckpt_path, cls_config)
tuner = Tuner(trainer)
tuner.scale_batch_size(model, datamodule=data)
model.set_max_min(data.max_c, data.min_c)
logger.experiment['model'] = model.model_name
logger.experiment['hyperparams'] = model.config
logger.experiment['batch_size'] = data.batch_size
logger.experiment['excluded_classes'] = str(exclude_classes)
trainer.fit(model, data)
trainer.test(datamodule=data, ckpt_path='best')
logger.experiment.stop()
def task(args, algorithm):
n_classes = 6 if args.moist else 8
classes = [i for i in range(n_classes)]
r = 1 if args.moist else 2
exclude_classes = list(combinations(classes, r))
exclude_classes.insert(0, ())
print(exclude_classes)
cls_ckpt, cls_config = train_cls(args, algorithm)
for ex in exclude_classes:
train_reg(args, algorithm, ex, cls_ckpt, cls_config)
def pipeline(args):
algorithms = []
if args.mlstm_fcn:
algorithms.append(
{
'cls': LitMLSTMfcnClassifier,
'reg': LitMLSTMfcnRegressor
}
)
if args.ts_transformer:
algorithms.append(
{
'cls': LitTSTransformerClassifier,
'reg': LitTSTransformerRegressor
}
)
if args.haptr:
algorithms.append(
{
'cls': LitHAPTRClassifier,
'reg': LitHAPTRRegressor
}
)
print(algorithms)
for algo in algorithms:
task(args, algo)
if __name__ == '__main__':
parser = ArgumentParser()
parser.add_argument('--dataset-path', type=str, default='/home/mikolaj/Datasets/moist/moist.txt')
parser.add_argument('--batch-size', type=int, default=64)
parser.add_argument('--max-epochs', type=int, default=1)
parser.add_argument('--mlstm-fcn', action='store_true')
parser.add_argument('--ts-transformer', action='store_true')
parser.add_argument('--haptr', action='store_false')
parser.add_argument('--moist', action='store_true')
args, _ = parser.parse_known_args()
pipeline(args)