-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathtest_defenses.py
498 lines (407 loc) · 18.3 KB
/
test_defenses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
from __future__ import division
from __future__ import print_function
from __future__ import absolute_import
from __future__ import unicode_literals
import os
import sys
import argparse
import json
import shutil
from collections import defaultdict
import numpy as np
import pandas as pd
from sklearn import linear_model, preprocessing, cluster, metrics, svm, model_selection
import matplotlib.pyplot as plt
import seaborn as sns
import scipy.linalg as slin
import scipy.sparse.linalg as sparselin
import scipy.sparse as sparse
import scipy.io as sio
import IPython
import nbformat
from nbconvert.preprocessors import ExecutePreprocessor
from nbconvert import HTMLExporter
import data_utils as data
import datasets
import defenses
import defense_testers
from upper_bounds import hinge_loss, hinge_grad
parser = argparse.ArgumentParser()
parser.add_argument('dataset_name', help='One of: imdb, enron, dogfish')
parser.add_argument('file_name', help='e.g., imdb_attack3.mat')
parser.add_argument('--min_leverage', help='Attack must initially exceed this leverage before defenses willl be run.', type=float)
parser.add_argument('--defense', help='Just test a single defense, e.g., centroid-vec, l2-ball, inverse-sigma, ...')
parser.add_argument('--no_defense', help='Skip all Q-based defenses.', action="store_true")
parser.add_argument('--weight_decay', help='If this is specified, the script will use this value instead of doing cross-validation.', type=float)
parser.add_argument("--debug", help="Changes parameters so that everything is sped up.", action="store_true")
args = parser.parse_args()
dataset_name = args.dataset_name
file_name = args.file_name
min_leverage = args.min_leverage
defense_to_test = args.defense
no_defense = args.no_defense
user_weight_decay = args.weight_decay
debug = args.debug
### Sanitize input and setup file paths
allowed_defenses = ['centroid-vec', 'l2-ball', 'l1-ball', 'inverse-sigma', 'pca-subspace', 'k-NN']
if ((defense_to_test is not None) and (defense_to_test not in allowed_defenses)):
raise ValueError, 'defense must be in %s' % allowed_defenses
# if ext != '.mat':
# file_name = file_name + '.mat'
attack_path = os.path.join(datasets.DATA_FOLDER, dataset_name, file_name)
if not os.path.isfile(attack_path):
raise ValueError, 'Specified file %s does not exist' % attack_path
output_web_path = datasets.get_web_html_path(file_name)
output_ipynb_path = datasets.get_output_ipynb_path(dataset_name, file_name)
output_html_path = datasets.get_output_html_path(dataset_name, file_name)
output_mat_path = datasets.get_output_mat_path(dataset_name, file_name)
output_dists_path = datasets.get_output_dists_path(dataset_name, file_name)
output_json_path = datasets.get_output_json_path(dataset_name, file_name)
if os.path.isfile(output_html_path):
print('There is already a report at %s. This will overwrite it.' % output_html_path)
print('If you do not want this to happen, break out now!')
print('')
if debug: print('### Debug mode.')
print('### Testing defenses against %s/%s.' % (dataset_name, file_name))
print('')
### Load data and setup
X_modified, Y_modified, X_test, Y_test, idx_train, idx_poison = datasets.load_attack(
dataset_name,
file_name)
X_train = X_modified[idx_train, :]
Y_train = Y_modified[idx_train]
X_poison = X_modified[idx_poison, :]
Y_poison = Y_modified[idx_poison]
results = defaultdict(dict)
datadef = defenses.DataDef(X_modified, Y_modified, X_test, Y_test, idx_train, idx_poison)
print('Number of good training examples: %s' % X_train.shape[0])
print('Number of poisoned training examples: %s' % X_poison.shape[0])
print('epsilon = %.3f' % datadef.epsilon)
print('\n')
results['epsilon'] = datadef.epsilon
if not debug:
tol_svm = 1e-6
random_state_svm = 24
max_iter_cv_svm = 1000
max_iter_test_svm = 4000
weight_decays = [0.5, 0.1, 0.05, 0.01, 0.005, 0.001, 0.0005]
num_folds = 5
max_frac_to_remove = 0.30
frac_increment = 0.05
inverse_sigma_dim = 1000 # This only gets used if the number of features > 2048.
num_neighbors = 5 # for k-NN
elif debug:
tol_svm = 1e-6
random_state_svm = 24
max_iter_cv_svm = 10
max_iter_test_svm = 40
weight_decays = [0.1, 0.05]
num_folds = 2
max_frac_to_remove = 0.20
frac_increment = 0.20
inverse_sigma_dim = 10
num_neighbors = 2
if user_weight_decay is not None:
weight_decays = [user_weight_decay]
all_dists = np.zeros((X_modified.shape[0], 0))
results['dist_labels'] = []
### Cross-validation
print('## Running %s-fold cross-validation to pick weight_decay' % num_folds)
k_fold = model_selection.KFold(n_splits=num_folds, shuffle=True, random_state=2)
best_cv_score_modified = -1
best_cv_score_train = -1
results['mean_cv_scores_modified'] = []
results['mean_cv_scores_train'] = []
for weight_decay in weight_decays: #, 0.001, 0.0005, 0.0001]:
C = 1.0 / (X_modified.shape[0] * weight_decay)
svm_model = svm.LinearSVC(
C=C,
loss='hinge',
tol=tol_svm,
fit_intercept=True,
random_state=random_state_svm,
max_iter=max_iter_cv_svm)
cv_scores_modified = model_selection.cross_val_score(
svm_model,
X_modified, Y_modified,
cv=k_fold,
n_jobs=np.min((num_folds, 8)))
C = 1.0 / (X_train.shape[0] * weight_decay)
svm_model = svm.LinearSVC(
C=C,
loss='hinge',
tol=tol_svm,
fit_intercept=True,
random_state=random_state_svm,
max_iter=max_iter_cv_svm)
cv_scores_train = model_selection.cross_val_score(
svm_model,
X_train, Y_train,
cv=k_fold,
n_jobs=np.min((num_folds, 8)))
mean_cv_score_modified = np.mean(cv_scores_modified)
mean_cv_score_train = np.mean(cv_scores_train)
results['mean_cv_scores_modified'].append(mean_cv_score_modified)
results['mean_cv_scores_train'].append(mean_cv_score_train)
print('weight_decay = %s:' % weight_decay)
print(' Val acc (modified data): %.3f (%s)' % (mean_cv_score_modified, cv_scores_modified))
print(' Val acc (clean data) : %.3f (%s)' % (mean_cv_score_train, cv_scores_train))
print('')
if mean_cv_score_modified > best_cv_score_modified:
best_cv_score_modified = mean_cv_score_modified
best_weight_decay_modified = weight_decay
if mean_cv_score_train > best_cv_score_train:
best_cv_score_train = mean_cv_score_train
best_weight_decay_train = weight_decay
print('Best value of weight_decay on modified data: %s' % best_weight_decay_modified)
print('Best value of weight_decay on clean data : %s' % best_weight_decay_train)
print('\n')
results['weight_decays'] = weight_decays
results['best_weight_decay_modified'] = best_weight_decay_modified
results['best_weight_decay_train'] = best_weight_decay_train
results['cv_val_acc_modified'] = best_cv_score_modified
results['cv_val_acc_train'] = best_cv_score_train
### Evaluate on test set
print('## Evaluating on test set using cross-validated weight_decay, without any other defenses')
C = 1.0 / (X_train.shape[0] * best_weight_decay_train)
svm_model = svm.LinearSVC(
C=C,
loss='hinge',
tol=tol_svm,
fit_intercept=True,
random_state=random_state_svm,
max_iter=max_iter_test_svm)
svm_model.fit(X_train, Y_train)
params_train = np.reshape(svm_model.coef_, -1)
bias_train = svm_model.intercept_[0]
results['test'] = defaultdict(dict)
results['test']['clean'] = defaultdict(dict)
results['test']['clean']['train_acc_clean'] = svm_model.score(X_train, Y_train)
results['test']['clean']['test_acc'] = svm_model.score(X_test, Y_test)
results['test']['clean']['params_norm'] = np.linalg.norm(params_train)
results['test']['clean']['train_loss_clean'] = hinge_loss(params_train, bias_train, X_train, Y_train)
results['test']['clean']['test_loss'] = hinge_loss(params_train, bias_train, X_test, Y_test)
print('Training on the clean data:')
print(' Train acc (clean) : ', results['test']['clean']['train_acc_clean'])
print(' Train loss (clean): ', results['test']['clean']['train_loss_clean'])
print(' Test acc : ', results['test']['clean']['test_acc'])
print(' Test loss : ', results['test']['clean']['test_loss'])
print(' Norm of params: ', results['test']['clean']['params_norm'])
print('')
C = 1.0 / (X_modified.shape[0] * best_weight_decay_modified)
svm_model = svm.LinearSVC(
C=C,
loss='hinge',
tol=tol_svm,
fit_intercept=True,
random_state=random_state_svm,
max_iter=max_iter_test_svm)
svm_model.fit(X_modified, Y_modified)
params_modified = np.reshape(svm_model.coef_, -1)
bias_modified = svm_model.intercept_[0]
results['test']['modified'] = defaultdict(dict)
results['test']['modified']['train_acc_overall'] = svm_model.score(X_modified, Y_modified)
results['test']['modified']['train_acc_clean'] = svm_model.score(X_train, Y_train)
results['test']['modified']['train_acc_poison'] = svm_model.score(X_poison, Y_poison)
results['test']['modified']['test_acc'] = svm_model.score(X_test, Y_test)
results['test']['modified']['params_norm'] = np.linalg.norm(params_modified)
results['test']['modified']['train_loss_overall'] = hinge_loss(params_modified, bias_modified, X_modified, Y_modified)
results['test']['modified']['train_loss_clean'] = hinge_loss(params_modified, bias_modified, X_train, Y_train)
results['test']['modified']['train_loss_poison'] = hinge_loss(params_modified, bias_modified, X_poison, Y_poison)
results['test']['modified']['test_loss'] = hinge_loss(params_modified, bias_modified, X_test, Y_test)
print('Training on the poisoned data:')
print(' Train acc (overall) : ', results['test']['modified']['train_acc_overall'])
print(' Train acc (clean) : ', results['test']['modified']['train_acc_clean'])
print(' Train acc (poison) : ', results['test']['modified']['train_acc_poison'])
print(' Train loss (overall): ', results['test']['modified']['train_loss_overall'])
print(' Train loss (clean) : ', results['test']['modified']['train_loss_clean'])
print(' Train loss (poison) : ', results['test']['modified']['train_loss_poison'])
print(' Test acc : ', results['test']['modified']['test_acc'])
print(' Test loss : ', results['test']['modified']['test_loss'])
print(' Norm of params: ', results['test']['modified']['params_norm'])
print('')
diff_in_test_acc = results['test']['clean']['test_acc'] - results['test']['modified']['test_acc']
leverage = diff_in_test_acc / datadef.epsilon
print('Difference in test accuracy between clean and poisoned: %.3f' % diff_in_test_acc)
print('Leverage: %.3f' % leverage)
print('\n')
results['test']['leverage'] = leverage
if (min_leverage is not None) and (leverage < min_leverage):
print('Leverage is below specified min_leverage. Skipping defenses...')
elif no_defense:
print('Skipping defenses...')
else:
### Q-based defenses
print('## Running Q-based defenses')
class_map = data.get_class_map()
for use_emp, use_emp_label in [(True, 'emp'), (False, 'true')]:
if use_emp:
print('Using poisoned data to calculate centroids/covariances:')
centroids = datadef.emp_centroids
else:
print('Using true data to calculate centroids/covariances:')
centroids = datadef.true_centroids
centroid_vec = data.get_centroid_vec(centroids)
## Distance in the direction of the vector between centroids ("slab")
defense_label = 'centroid-vec'
if ((defense_to_test is None) or (defense_to_test == defense_label)):
print(' Computing distances in the direction of the vector between centroids...')
Q = centroid_vec
norm = 2
all_dists, results = defense_testers.process_defense(
datadef,
Q=Q,
all_dists=all_dists,
model=svm_model,
results=results,
use_emp=use_emp,
use_emp_label=use_emp_label,
defense_label=defense_label,
max_frac_to_remove=max_frac_to_remove,
frac_increment=frac_increment,
num_folds=num_folds)
## L2 distance to centroids ("L2 ball")
defense_label = 'l2-ball'
if ((defense_to_test is None) or (defense_to_test == defense_label)):
print(' Computing L2 distances to class centroids...')
Q = None
norm = 2
all_dists, results = defense_testers.process_defense(
datadef,
Q=Q,
all_dists=all_dists,
model=svm_model,
results=results,
use_emp=use_emp,
use_emp_label=use_emp_label,
defense_label=defense_label,
max_frac_to_remove=max_frac_to_remove,
frac_increment=frac_increment,
num_folds=num_folds)
## L1 distance to centroids ("L1 ball")
defense_label = 'l1-ball'
if ((defense_to_test is None) or (defense_to_test == defense_label)):
print(' Computing L1 distances to class centroids...')
Q = None
norm = 1
all_dists, results = defense_testers.process_defense(
datadef,
Q=Q,
all_dists=all_dists,
model=svm_model,
results=results,
use_emp=use_emp,
use_emp_label=use_emp_label,
defense_label=defense_label,
max_frac_to_remove=max_frac_to_remove,
frac_increment=frac_increment,
num_folds=num_folds,
norm=norm)
## Inverse sigma
# If num_features > 2048, use top k PCs
# Else just use the whole thing
defense_label = 'inverse-sigma'
if ((defense_to_test is None) or (defense_to_test == defense_label)):
print(' Computing inverse sigma distances to class centroids...')
if X_modified.shape[1] > 2048:
P, sv_ratio, PX_modified, _, _ = datadef.project_to_low_rank(
k=inverse_sigma_dim,
use_emp=use_emp,
get_projected_data=True)
P_datadef = defenses.DataDef(PX_modified, Y_modified, None, None, idx_train, idx_poison)
print(' Projected to %s-d. sigma_k / sigma_1 = %.4f' % (inverse_sigma_dim, sv_ratio))
else:
P_datadef = datadef
sqrt_inv_covs = P_datadef.get_sqrt_inv_covs(use_emp=use_emp)
Q = sqrt_inv_covs
all_dists, results = defense_testers.process_defense(
datadef,
Q=Q,
all_dists=all_dists,
model=svm_model,
results=results,
use_emp=use_emp,
use_emp_label=use_emp_label,
defense_label=defense_label,
max_frac_to_remove=max_frac_to_remove,
frac_increment=frac_increment,
num_folds=num_folds,
P_datadef=P_datadef)
## PCA-subspace
# How to pick k?
defense_label = 'pca-subspace'
if ((defense_to_test is None) or (defense_to_test == defense_label)):
print(' Computing PCA subspace...')
P, sv_ratio = datadef.project_to_low_rank(
k=None,
use_emp=use_emp,
get_projected_data=False)
print(' Normal subspace = first %s SVs + mu_pos + mu_neg. This measures distance in the abnormal subspace (everything outside the normal subspace).' % (P.shape[0] - 2))
print(' sigma_k / sigma_1 = %.4f' % sv_ratio)
results['pca_normal_k'] = P.shape[0]
results['pca_normal_ratio'] = sv_ratio
subtract_from_l2 = True
all_dists, results = defense_testers.process_defense(
datadef,
Q=P,
all_dists=all_dists,
model=svm_model,
results=results,
use_emp=use_emp,
use_emp_label=use_emp_label,
defense_label=defense_label,
max_frac_to_remove=max_frac_to_remove,
frac_increment=frac_increment,
num_folds=num_folds,
subtract_from_l2=subtract_from_l2)
## k-NN
defense_label = 'k-NN'
if ((defense_to_test is None) or (defense_to_test == defense_label)):
print(' Computing k-nearest neighbors...')
dists = datadef.get_knn_dists(num_neighbors=num_neighbors).reshape(-1, 1)
all_dists, results = defense_testers.process_defense(
datadef,
Q=None,
all_dists=all_dists,
model=svm_model,
results=results,
use_emp=None,
use_emp_label=None,
defense_label=defense_label,
max_frac_to_remove=max_frac_to_remove,
frac_increment=frac_increment,
num_folds=num_folds,
dists=dists)
results['num_neighbors'] = num_neighbors
### Save dists and metadata
print('')
print('Defenses done. Saving output to disk...')
np.savez(
output_dists_path,
all_dists=all_dists,
params_clean=params_train,
bias_clean=bias_train,
params_poisoned=params_modified,
bias_poisoned=bias_modified)
with open(output_json_path, 'w') as f:
f.write(json.dumps(results, cls=data.NumpyEncoder))
sio.savemat(output_mat_path, {'params_clean':params_train, 'params_poisoned':params_modified})
### Execute notebook
print('')
print('Generating report...')
with open('viz_defenses.ipynb') as f:
nb = nbformat.read(f, as_version=4)
# Do surgery on the notebook to insert dataset and file names in the second cell
nb['cells'][1]['source'] = nb['cells'][1]['source'].replace('DATASET_NAME', dataset_name)
nb['cells'][1]['source'] = nb['cells'][1]['source'].replace('FILE_NAME', file_name)
ep = ExecutePreprocessor(timeout=600, kernel_name='python2')
ep.preprocess(nb, {})
with open(output_ipynb_path, 'wt') as f:
nbformat.write(nb, f)
### Export completed notebook and copy it to web directory
html_exporter = HTMLExporter()
(body, resources) = html_exporter.from_file(output_ipynb_path)
with open(output_html_path, 'wt') as f:
f.write(body)
shutil.copyfile(output_html_path, output_web_path)
print('All done! Check the report at %s.' % (output_html_path))