-
Notifications
You must be signed in to change notification settings - Fork 9
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Regd. VINS-Mono's degradation #4
Comments
I quickly tried VINS-Mono with your config, and I have also confirmed that the performance is better than the one we reported in our paper.
Anyway, thank you very much for the important comment! |
I myself haven't done much tuning, I was using the default VINS-Mono parameters with your camera values, extrinsics, and (old) IMU intrinsic values. I had also disabled relocalization and loop closure. It's surprising how small changes in the IMU parameters can have a big impact on the accuracy. Thanks for letting me know! |
Update: I ran VINS-Mono five times again with the updated config file. The error has increased to 0.98 m from earlier. However I feel the increase is more due to the reduced feature count of 120 (from the default 150), because when I run it with the default 150 the error is 0.45 m. Reducing the default feature count might not be the right thing to do. I also used the true AirSim IMU intrinsics discussed here and converted to discrete time for VINS-Mono based on the reported sampling time of 200Hz.
Strangely, like you mentioned earlier, the performance of VINS-Mono is worse here with an error of 2.4 m. Given we are using the right IMU noise values (which are also very less), and that there are no other sources of IMU noise in the simlation, I expected the system to be more robust with these values. But clearly that is not happening and the error is worse than using inflated values. Do you have any insights about this? Config file: |
We appreciate all of your insights :) |
As another update, I had noticed that VINS-Mono has a better accuracy with the true Airim IMU parameters in the static sequences than with the inflated parameters. The inflated parameters helps VINS only in the dynamic sequences strangely. |
Thank you for your updates! Those are our observations:
Still, the overall trend of the estimation error is Sorry for the late reply. Again, thank you very much for your effort! |
Hi,
I've been running VINS-Mono on your sequences to observe its degradation.
This is the config file I'm using - vins_viode_config.txt. The IMU parameters are the same as yours, and the camera intrinsics are based on a guess since they aren't available yet.
This is the ground truth trajectory for parking_lot environment, extracted from the bagfile - high_groundtruth.txt.
I've run VINS-Mono multiple times on the high-dynamic version of the parking_lot environment multiple times but surprisingly its tracking is still quite stable and the ATE is always less than 0.50 m. This is one sample estimate -
vins_est_traj.txt
But in the paper you've shown VINS-Mono's error to go up to 5 m. Am I missing something? I'm using evo to compute the ATE, with the SE3 alignment option.
evo_ape tum high_groundtruth.txt vins_est_traj.txt --align
The text was updated successfully, but these errors were encountered: