-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchurn.py
73 lines (52 loc) · 2.11 KB
/
churn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
# -*- coding: utf-8 -*-
"""
Created on Sat Aug 18 08:23:03 2018
@author: KERKOURI Mohamed Amine
"""
################################## Part 1 Pre-Processing#########################"
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
# Importing the dataset
dataset = pd.read_csv('Churn_Modelling.csv')
X = dataset.iloc[:, 3:13].values
y = dataset.iloc[:, 13].values
# Encoding categorical data
# Encoding the Independent Variable
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
labelencoder_X_1 = LabelEncoder()
X[:, 1] = labelencoder_X_1.fit_transform(X[:, 1])
labelencoder_X_2 = LabelEncoder()
X[:, 2] = labelencoder_X_2.fit_transform(X[:, 2])
onehotencoder = OneHotEncoder(categorical_features = [1])
X = onehotencoder.fit_transform(X).toarray()
X=X[:,1:]
# Splitting the dataset into the Training set and Test set
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)
# Feature Scaling
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
################################## Part 2 ANN Making ##########################
#importing keras
import keras
from keras.models import Sequential
from keras.layers import Dense
#Initialising ANN
classifier =Sequential()
#Adding Input layer and Hidden layer 1
classifier.add(Dense(output_dim=6,init='uniform',activation ='relu',input_dim=11))
#Adding Hidden layer 2
classifier.add(Dense(output_dim=6,init='uniform',activation ='relu'))
#Adding Output layer
classifier.add(Dense(output_dim=6,init='uniform',activation ='relu'))
classifier.compile(optimizer='adam',loss='binary_crossentropy',metrics=['accuracy'])
# Fitting the ANN to the Training set
classifier.fit(X_train, y_train, batch_size = 10, epochs = 100)
# Predicting the Test set results
y_pred = classifier.predict(X_test)
# Making the Confusion Matrix
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)