-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtime.f90
126 lines (109 loc) · 4.54 KB
/
time.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
!
! Copyright (c) 2012-2022 Kristopher L. Kuhlman (klkuhlm at sandia dot gov)
!
! Permission is hereby granted, free of charge, to any person obtaining a copy
! of this software and associated documentation files (the "Software"), to deal
! in the Software without restriction, including without limitation the rights
! to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
! copies of the Software, and to permit persons to whom the Software is
! furnished to do so, subject to the following conditions:
!
! The above copyright notice and this permission notice shall be included in
! all copies or substantial portions of the Software.
!
! THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
! IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
! FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
! AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
! LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
! OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
! THE SOFTWARE.
!
module time
implicit none
private
public :: lapTime
contains
! ##################################################
! return a vector of p for imposing general time behavior
! on a function that is a pulse in time
function lapTime(l) result(mult)
use constants, only: EP
use types, only : invLaplace
implicit none
type(invLaplace), intent(in) :: l
complex(EP), dimension(l%np) :: mult
integer :: n
real(EP), allocatable :: ti(:), Q(:), W(:), denom(:), y(:)
real(EP) :: tf
select case(l%timeType)
case(1)
! step on at time=par1
mult(1:l%np) = exp(-l%timePar(1)*l%p)/l%p
case(2)
! step on at time=par1, off at time=par2
mult(1:l%np) = exp(-l%timePar(1)*l%p)/l%p - exp(-l%timePar(2)*l%p)/l%p
case(3)
! instantaneous at t=par1
mult(1:l%np) = exp(-l%timePar(1)*l%p)
case(4)
! "step test": increasing by integer multiples of Q each
! integer multiple of par1 time, off at par2
mult(1:l%np) = 1.0/(l%p - l%p*exp(-l%timePar(1)*l%p)) * &
& (1.0 - exp(-l%timePar(2)*l%p))/l%p
case(5)
! half square wave (only +), period 2*par1
! shifted to start at t=par2
mult(1:l%np) = exp(-l%timePar(2)*l%p)/(l%p + l%p*exp(-l%timePar(1)*l%p))
case(6)
! cosine wave - cos(at)
! shifted to start at t=par2
mult(1:l%np) = exp(-l%timePar(2)*l%p)*l%p/(l%p**2 + l%timePar(1)**2)
case(7)
! half triangular wave (only +), period 4*par1
! shifted to start at t=par2
mult(1:l%np) = exp(-l%timePar(2)*l%p) / l%p**2 * &
&(exp(l%timePar(1)*l%p) - exp(l%timePar(1)*l%p))/ &
&(exp(l%timePar(1)*l%p) + exp(l%timePar(1)*l%p))
case(8)
! full square wave (only +, then -), period 2*par1
! shifted to start at t=par2
mult(1:l%np) = exp(-l%timePar(2)*l%p)* &
& (1.0 - exp(-l%timePar(1)*l%p/2.0))/ &
& ((1.0 + exp(-l%timePar(1)*l%p/2.0))*l%p)
case(-100:-1)
!! arbitrary piecewise constant pumping rate with n steps, from ti(1) to tf
n = -l%timeType
allocate(ti(n),Q(0:n))
! unpack initial times, pumping rates and final time
ti(1:n) = l%timePar(1:n)
tf = l%timePar(n+1)
Q(0:n) = [0.0_EP, l%timePar(n+2:2*n+1)]
mult(1:l%np) = (sum(spread(Q(1:n) - Q(0:n-1),2,l%np)*&
& exp(-spread(ti(1:n),2,l%np)*spread(l%p(1:l%np),1,n)),dim=1) - &
& sum(Q(1:n) - Q(0:n-1))*exp(-tf*l%p(:)))/l%p(:)
deallocate(ti,Q)
case(:-101)
!! piecewise linear pumping rate with n steps, from ti(1) to tf
!! no jumps in value (no vertical slopes)
n = -l%timeType - 100
allocate(ti(n),W(0:n+1),y(1:n),denom(1:n))
! unpack initial times, pumping rates and final time
ti(1:n) = l%timePar(1:n)
tf = l%timePar(n+1)
y(1:n) = l%timePar(n+2:2*n+1)
! compute slope between each pair of points
W(0) = 0.0
W(n+1) = 0.0
denom = [ti(2:n),tf] - ti(1:n)
if (any(abs(denom) < epsilon(1.0))) then
stop 'no vertical sloped lines in piecewise linear pumping rate'
end if
W(1:n) = (y(2:n+1) - y(1:n))/denom ! rise/run
mult(1:l%np) = (sum(spread(W(1:n) - W(0:n-1),2,l%np)*&
& exp(spread(-ti,2,l%np)*spread(l%p,1,n)),dim=1) - &
& sum(W(1:n) - W(0:n-1))*exp(-tf*l%p))/l%p**2
deallocate(ti,W,y,denom)
end select
end function lapTime
end module time