-
Notifications
You must be signed in to change notification settings - Fork 299
/
Copy pathbase_model.py
76 lines (59 loc) · 2.48 KB
/
base_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import lasagne
import cPickle
import random
import numpy as np
class base_model(object):
"""the base model for both transductive and inductive learning."""
def __init__(self, args):
"""
args (an object): contains the arguments used for initalizing the model.
"""
self.embedding_size = args.embedding_size
self.learning_rate = args.learning_rate
self.batch_size = args.batch_size
self.neg_samp = args.neg_samp
self.model_file = args.model_file
self.window_size = args.window_size
self.path_size = args.path_size
self.g_batch_size = args.g_batch_size
self.g_learning_rate = args.g_learning_rate
self.g_sample_size = args.g_sample_size
self.use_feature = args.use_feature
self.update_emb = args.update_emb
self.layer_loss = args.layer_loss
lasagne.random.set_rng(np.random)
np.random.seed(13)
random.seed(13)
self.inst_generator = self.gen_train_inst()
self.graph_generator = self.gen_graph()
self.label_generator = self.gen_label_graph()
def store_params(self):
"""serialize the model parameters in self.model_file.
"""
for i, l in enumerate(self.l):
fout = open("{}.{}".format(self.model_file, i), 'w')
params = lasagne.layers.get_all_param_values(l)
cPickle.dump(params, fout, cPickle.HIGHEST_PROTOCOL)
fout.close()
def load_params(self):
"""load the model parameters from self.model_file.
"""
for i, l in enumerate(self.l):
fin = open("{}.{}".format(self.model_file, i))
params = cPickle.load(fin)
lasagne.layers.set_all_param_values(l, params)
fin.close()
def comp_iter(self, iter):
"""an auxiliary function used for computing the number of iterations given the argument iter.
iter can either be an int or a float.
"""
if iter >= 1:
return iter
return 1 if random.random() < iter else 0
def train(self, init_iter_label, init_iter_graph, max_iter, iter_graph, iter_inst, iter_label):
"""training API.
This method is a wrapper for init_train and step_train.
Refer to init_train and step_train for more details (Cf. trans_model.py and ind_model.py).
"""
self.init_train(init_iter_label, init_iter_graph)
self.step_train(max_iter, iter_graph, iter_inst, iter_label)