-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.rs
37 lines (29 loc) · 1.52 KB
/
main.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
use rust_digit_recognizer::{Evaluator, Observation, Distance, BasicClassifier, ManhattanDistance, EuclideanDistance, Classifier, read_observations};
use simple_stopwatch::Stopwatch;
/// After being fed a training set of images representing digits, the program predicts the digits in a new set of images and reports how many were correctly predicted.
fn main() {
digit_recognize(&ManhattanDistance {}, "Manhattan Distance");
digit_recognize(&EuclideanDistance {}, "Euclidean Distance");
}
/// Computes the percentage of correctly predicted digits using the specified distance (cost) algorithm.
///
/// # Arguments
///
/// * `distance` - A distance (cost) algorithm.
/// * `description` - Algorithm description.
///
fn digit_recognize(distance: &dyn Distance, description: &str) {
let sw = Stopwatch::start_new();
let mut classifier = BasicClassifier { training_set: Vec::new(), distance };
let training_path = "trainingsample.csv";
let training_set: Vec<Observation> = read_observations(training_path);
classifier.train(&training_set);
let validation_path = "validationsample.csv";
let validation_set: Vec<Observation> = read_observations(validation_path);
let evaluator = Evaluator {};
let percent_correct = 100.0 * evaluator.percent_correct(&validation_set, &classifier);
let percent_correct = format!("{percent_correct:.2}%");
println!("Correctly predicted: {percent_correct}");
let elapsed_seconds = sw.s();
println!("Time elapsed ({description}) = {elapsed_seconds:.2}s\n");
}