From 0af08132eec552b1811a89bce7f4834b65f9ead3 Mon Sep 17 00:00:00 2001 From: Tvrtko Ursulin Date: Fri, 15 Nov 2024 10:21:50 +0000 Subject: [PATCH] dma-fence: Use kernel's sort for merging fences MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit commit fe52c649438b8489c9456681d93a9b3de3d38263 upstream. One alternative to the fix Christian proposed in https://lore.kernel.org/dri-devel/20241024124159.4519-3-christian.koenig@amd.com/ is to replace the rather complex open coded sorting loops with the kernel standard sort followed by a context squashing pass. Proposed advantage of this would be readability but one concern Christian raised was that there could be many fences, that they are typically mostly sorted, and so the kernel's heap sort would be much worse by the proposed algorithm. I had a look running some games and vkcube to see what are the typical number of input fences. Tested scenarios: 1) Hogwarts Legacy under Gamescope 450 calls per second to __dma_fence_unwrap_merge. Percentages per number of fences buckets, before and after checking for signalled status, sorting and flattening: N Before After 0 0.91% 1 69.40% 2-3 28.72% 9.4% (90.6% resolved to one fence) 4-5 0.93% 6-9 0.03% 10+ 2) Cyberpunk 2077 under Gamescope 1050 calls per second, amounting to 0.01% CPU time according to perf top. N Before After 0 1.13% 1 52.30% 2-3 40.34% 55.57% 4-5 1.46% 0.50% 6-9 2.44% 10+ 2.34% 3) vkcube under Plasma 90 calls per second. N Before After 0 1 2-3 100% 0% (Ie. all resolved to a single fence) 4-5 6-9 10+ In the case of vkcube all invocations in the 2-3 bucket were actually just two input fences. From these numbers it looks like the heap sort should not be a disadvantage, given how the dominant case is <= 2 input fences which heap sort solves with just one compare and swap. (And for the case of one input fence we have a fast path in the previous patch.) A complementary possibility is to implement a different sorting algorithm under the same API as the kernel's sort() and so keep the simplicity, potentially moving the new sort under lib/ if it would be found more widely useful. v2: * Hold on to fence references and reduce commentary. (Christian) * Record and use latest signaled timestamp in the 2nd loop too. * Consolidate zero or one fences fast paths. v3: * Reverse the seqno sort order for a simpler squashing pass. (Christian) Signed-off-by: Tvrtko Ursulin Fixes: 245a4a7b531c ("dma-buf: generalize dma_fence unwrap & merging v3") Closes: https://gitlab.freedesktop.org/drm/amd/-/issues/3617 Cc: Christian König Cc: Daniel Vetter Cc: Sumit Semwal Cc: Gustavo Padovan Cc: Friedrich Vock Cc: linux-media@vger.kernel.org Cc: dri-devel@lists.freedesktop.org Cc: linaro-mm-sig@lists.linaro.org Cc: # v6.0+ Reviewed-by: Christian König Signed-off-by: Christian König Link: https://patchwork.freedesktop.org/patch/msgid/20241115102153.1980-3-tursulin@igalia.com Signed-off-by: Greg Kroah-Hartman --- drivers/dma-buf/dma-fence-unwrap.c | 128 ++++++++++++++--------------- 1 file changed, 61 insertions(+), 67 deletions(-) diff --git a/drivers/dma-buf/dma-fence-unwrap.c b/drivers/dma-buf/dma-fence-unwrap.c index b19d0adf6086ef..6345062731f153 100644 --- a/drivers/dma-buf/dma-fence-unwrap.c +++ b/drivers/dma-buf/dma-fence-unwrap.c @@ -12,6 +12,7 @@ #include #include #include +#include /* Internal helper to start new array iteration, don't use directly */ static struct dma_fence * @@ -59,6 +60,25 @@ struct dma_fence *dma_fence_unwrap_next(struct dma_fence_unwrap *cursor) } EXPORT_SYMBOL_GPL(dma_fence_unwrap_next); + +static int fence_cmp(const void *_a, const void *_b) +{ + struct dma_fence *a = *(struct dma_fence **)_a; + struct dma_fence *b = *(struct dma_fence **)_b; + + if (a->context < b->context) + return -1; + else if (a->context > b->context) + return 1; + + if (dma_fence_is_later(b, a)) + return 1; + else if (dma_fence_is_later(a, b)) + return -1; + + return 0; +} + /* Implementation for the dma_fence_merge() marco, don't use directly */ struct dma_fence *__dma_fence_unwrap_merge(unsigned int num_fences, struct dma_fence **fences, @@ -67,8 +87,7 @@ struct dma_fence *__dma_fence_unwrap_merge(unsigned int num_fences, struct dma_fence_array *result; struct dma_fence *tmp, **array; ktime_t timestamp; - unsigned int i; - size_t count; + int i, j, count; count = 0; timestamp = ns_to_ktime(0); @@ -96,80 +115,55 @@ struct dma_fence *__dma_fence_unwrap_merge(unsigned int num_fences, if (!array) return NULL; - /* - * This trashes the input fence array and uses it as position for the - * following merge loop. This works because the dma_fence_merge() - * wrapper macro is creating this temporary array on the stack together - * with the iterators. - */ - for (i = 0; i < num_fences; ++i) - fences[i] = dma_fence_unwrap_first(fences[i], &iter[i]); - count = 0; - do { - unsigned int sel; - -restart: - tmp = NULL; - for (i = 0; i < num_fences; ++i) { - struct dma_fence *next; - - while (fences[i] && dma_fence_is_signaled(fences[i])) - fences[i] = dma_fence_unwrap_next(&iter[i]); - - next = fences[i]; - if (!next) - continue; - - /* - * We can't guarantee that inpute fences are ordered by - * context, but it is still quite likely when this - * function is used multiple times. So attempt to order - * the fences by context as we pass over them and merge - * fences with the same context. - */ - if (!tmp || tmp->context > next->context) { - tmp = next; - sel = i; - - } else if (tmp->context < next->context) { - continue; - - } else if (dma_fence_is_later(tmp, next)) { - fences[i] = dma_fence_unwrap_next(&iter[i]); - goto restart; + for (i = 0; i < num_fences; ++i) { + dma_fence_unwrap_for_each(tmp, &iter[i], fences[i]) { + if (!dma_fence_is_signaled(tmp)) { + array[count++] = dma_fence_get(tmp); } else { - fences[sel] = dma_fence_unwrap_next(&iter[sel]); - goto restart; - } - } + ktime_t t = dma_fence_timestamp(tmp); - if (tmp) { - array[count++] = dma_fence_get(tmp); - fences[sel] = dma_fence_unwrap_next(&iter[sel]); + if (ktime_after(t, timestamp)) + timestamp = t; + } } - } while (tmp); - - if (count == 0) { - tmp = dma_fence_allocate_private_stub(ktime_get()); - goto return_tmp; } - if (count == 1) { - tmp = array[0]; - goto return_tmp; - } + if (count == 0 || count == 1) + goto return_fastpath; + + sort(array, count, sizeof(*array), fence_cmp, NULL); - result = dma_fence_array_create(count, array, - dma_fence_context_alloc(1), - 1, false); - if (!result) { - for (i = 0; i < count; i++) + /* + * Only keep the most recent fence for each context. + */ + j = 0; + for (i = 1; i < count; i++) { + if (array[i]->context == array[j]->context) dma_fence_put(array[i]); - tmp = NULL; - goto return_tmp; + else + array[++j] = array[i]; + } + count = ++j; + + if (count > 1) { + result = dma_fence_array_create(count, array, + dma_fence_context_alloc(1), + 1, false); + if (!result) { + for (i = 0; i < count; i++) + dma_fence_put(array[i]); + tmp = NULL; + goto return_tmp; + } + return &result->base; } - return &result->base; + +return_fastpath: + if (count == 0) + tmp = dma_fence_allocate_private_stub(timestamp); + else + tmp = array[0]; return_tmp: kfree(array);