-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathmodules.py
507 lines (408 loc) · 21.4 KB
/
modules.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Function
from collections import OrderedDict
import numpy as np
import copy
import hparams as hp
import utils
import transformer.Constants as Constants
from transformer.Models import Encoder
from transformer.Layers import ConvNorm
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def clones(module, N):
return nn.ModuleList([copy.deepcopy(module) for _ in range(N)])
class AugmentationClassifier(nn.Module):
""" Simple augmentation classifier """
def __init__(self, input_dim=hp.encoder_hidden):
super(AugmentationClassifier, self).__init__()
self.grl = GradientReversalLayer()
self.hidden = hp.encoder_hidden
self.classifier = nn.Sequential(OrderedDict([
('d_fc1', nn.Linear(input_dim, self.hidden)),
('d_bn1', nn.LayerNorm(self.hidden)),
('d_relu1', nn.ReLU()),
('d_fc2', nn.Linear(self.hidden, 2)),
('d_softmax', nn.LogSoftmax(dim=-1))
]))
def forward(self, x):
# GRL
rev_x = self.grl(x)
# Calculate augmentation posterior
score = self.classifier(rev_x)
if len(score.size()) > 2:
score = score.mean(dim=1)
return score # [batch, 2]
class RevGrad(Function):
"""
A gradient reversal layer.
This layer has no parameters, and simply reverses the gradient in the backward pass.
See https://www.codetd.com/en/article/11984164, https://github.com/janfreyberg/pytorch-revgrad
"""
@staticmethod
def forward(ctx, input_, alpha_):
ctx.save_for_backward(input_, alpha_)
output = input_
return output
@staticmethod
def backward(ctx, grad_output): # pragma: no cover
grad_input = None
_, alpha_ = ctx.saved_tensors
if ctx.needs_input_grad[0]:
grad_input = -grad_output * alpha_
return grad_input, None
class GradientReversalLayer(nn.Module):
def __init__(self, alpha=1):
"""
A gradient reversal layer.
This layer has no parameters, and simply reverses the gradient
in the backward pass.
"""
super().__init__()
self._alpha = torch.tensor(alpha, requires_grad=False)
def forward(self, input_):
return RevGrad.apply(input_, self._alpha)
class AudioEncoder(nn.Module):
"""Encoder for audio-related style factors.
"""
def __init__(self):
super().__init__()
self.va_chs_grp = hp.va_chs_grp
self.n_mel_channels = hp.n_mel_channels
self.va_dim_energy = hp.va_dim_energy
self.va_dim_f0 = hp.va_dim_f0
self.va_enc_dim_d = hp.va_enc_dim_d
self.va_enc_dim_e = hp.va_enc_dim_e
self.va_enc_dim_p = hp.va_enc_dim_p
self.va_enc_dim_r = hp.va_enc_dim_r
self.va_neck_hidden_d = hp.va_neck_hidden_d
self.va_neck_hidden_e = hp.va_neck_hidden_e
self.va_neck_hidden_p = hp.va_neck_hidden_p
self.va_neck_hidden_r = hp.va_neck_hidden_r
# convolutions for duration
n_layers = 3
convolutions = []
for i in range(n_layers):
conv_layer = nn.Sequential(
ConvNorm(self.n_mel_channels if i==0 else self.va_enc_dim_d,
self.va_enc_dim_d,
kernel_size=5, stride=1,
padding=2,
dilation=1, w_init_gain='relu'),
nn.GroupNorm(self.va_enc_dim_d//self.va_chs_grp, self.va_enc_dim_d))
convolutions.append(conv_layer)
self.convolutions_1 = nn.ModuleList(convolutions)
self.lstm_1 = nn.LSTM(self.va_enc_dim_d, self.va_neck_hidden_d, 2, batch_first=True, bidirectional=True)
# convolutions for f0
convolutions = []
for i in range(n_layers):
conv_layer = nn.Sequential(
ConvNorm(self.va_dim_f0 if i==0 else self.va_enc_dim_p,
self.va_enc_dim_p,
kernel_size=5, stride=1,
padding=2,
dilation=1, w_init_gain='relu'),
nn.GroupNorm(self.va_enc_dim_p//self.va_chs_grp, self.va_enc_dim_p))
convolutions.append(conv_layer)
self.convolutions_2 = nn.ModuleList(convolutions)
self.lstm_2 = nn.LSTM(self.va_enc_dim_p, self.va_neck_hidden_p, 2, batch_first=True, bidirectional=True)
# convolutions for energy
convolutions = []
for i in range(n_layers):
conv_layer = nn.Sequential(
ConvNorm(self.va_dim_energy if i==0 else self.va_enc_dim_e,
self.va_enc_dim_e,
kernel_size=5, stride=1,
padding=2,
dilation=1, w_init_gain='relu'),
nn.GroupNorm(self.va_enc_dim_e//self.va_chs_grp, self.va_enc_dim_e))
convolutions.append(conv_layer)
self.convolutions_3 = nn.ModuleList(convolutions)
self.lstm_3 = nn.LSTM(self.va_enc_dim_e, self.va_neck_hidden_e, 2, batch_first=True, bidirectional=True)
# convolutions for residual
convolutions = []
for i in range(n_layers):
conv_layer = nn.Sequential(
ConvNorm(self.n_mel_channels if i==0 else self.va_enc_dim_r,
self.va_enc_dim_r,
kernel_size=5, stride=1,
padding=2,
dilation=1, w_init_gain='relu'),
nn.GroupNorm(self.va_enc_dim_r//self.va_chs_grp, self.va_enc_dim_r))
convolutions.append(conv_layer)
self.convolutions_4 = nn.ModuleList(convolutions)
self.lstm_4 = nn.LSTM(self.va_enc_dim_r, self.va_neck_hidden_r, 2, batch_first=True, bidirectional=True)
def forward(self, cat, len_org, seq_len, mask):
d, f0, e, r = torch.split(cat, [self.n_mel_channels, self.va_dim_f0, self.va_dim_energy, self.n_mel_channels], dim=1)
for i, (conv_1, conv_2, conv_3, conv_4) in enumerate(zip(self.convolutions_1, self.convolutions_2, self.convolutions_3, self.convolutions_4)):
d = F.relu(conv_1(d))
f0 = F.relu(conv_2(f0))
e = F.relu(conv_3(e))
r = F.relu(conv_4(r))
cat = torch.cat((d, f0, e, r), dim=1).transpose(1, 2)
cat = utils.mel_calibrator(cat, len_org, seq_len)
d, f0, e, r = torch.split(cat, [self.va_enc_dim_d, self.va_enc_dim_p, self.va_enc_dim_e, self.va_enc_dim_r], dim=-1)
d = self.lstm_1(d)[0]
f0 = self.lstm_2(f0)[0]
e = self.lstm_3(e)[0]
r = self.lstm_4(r)[0]
d_forward = d[:, :, :self.va_neck_hidden_d]
d_backward = d[:, :, self.va_neck_hidden_d:]
f0_forward = f0[:, :, :self.va_neck_hidden_p]
f0_backward = f0[:, :, self.va_neck_hidden_p:]
e_forward = e[:, :, :self.va_neck_hidden_e]
e_backward = e[:, :, self.va_neck_hidden_e:]
r_forward = r[:, :, :self.va_neck_hidden_r]
r_backward = r[:, :, self.va_neck_hidden_r:]
duration_encoding = torch.cat((d_forward, d_backward), dim=-1)
f0_encoding = torch.cat((f0_forward, f0_backward), dim=-1)
energy_encoding = torch.cat((e_forward, e_backward), dim=-1)
noise_encoding = torch.cat((r_forward, r_backward), dim=-1)
return duration_encoding, f0_encoding, energy_encoding, noise_encoding
class StyleEncoder(nn.Module):
""" Style Encoder """
def __init__(self):
super(StyleEncoder, self).__init__()
self.text_encoder = Encoder()
self.audio_encoder = AudioEncoder()
self.text_linear_down = nn.Sequential(nn.Linear(hp.encoder_hidden, hp.va_neck_hidden_t),
nn.ReLU())
self.speaker_linear_p = nn.Sequential(nn.Linear(hp.speaker_embed_dim, hp.va_neck_hidden_p*2),
nn.ReLU())
self.speaker_linear = nn.Sequential(nn.Linear(hp.speaker_embed_dim, hp.encoder_hidden),
nn.ReLU())
def encoder_input_cat(self, mel_target, p_norm, e_input, mel_aug):
p_norm_quantized = utils.quantize_1D_torch(p_norm.unsqueeze(-1))[0]
e_input_quantized = utils.quantize_1D_torch(e_input.unsqueeze(-1))[0]
enc_cat = torch.cat((mel_target, p_norm_quantized, e_input_quantized, mel_aug), dim=-1)
enc_cat = enc_cat.transpose(2,1)
return enc_cat
def forward(self, text, speaker_embed, mel_target, p_norm, e_input, mel_aug, mel_len, src_len, src_mask):
# Encoding
text_encoding = self.text_encoder(text, src_mask)
text_encoding_neck = self.text_linear_down(text_encoding)
speaker_encoding_p = self.speaker_linear_p(speaker_embed)
speaker_encoding = self.speaker_linear(speaker_embed)
enc_cat = self.encoder_input_cat(mel_target, p_norm, e_input, mel_aug)
duration_encoding, pitch_encoding, energy_encoding, noise_encoding = self.audio_encoder(enc_cat, mel_len, src_len, mask=None)
return text_encoding, text_encoding_neck, speaker_encoding_p, speaker_encoding, duration_encoding, pitch_encoding, energy_encoding, noise_encoding
class StyleModeling(nn.Module):
""" Style Modeling """
def __init__(self):
super(StyleModeling, self).__init__()
self.style_encoder = StyleEncoder()
self.augmentation_classifier_d = AugmentationClassifier(input_dim=hp.va_neck_hidden_d*2)
self.augmentation_classifier_p = AugmentationClassifier(input_dim=hp.va_neck_hidden_p*2)
self.augmentation_classifier_e = AugmentationClassifier(input_dim=hp.va_neck_hidden_e*2)
self.duration_linear = nn.Sequential(nn.Linear(hp.va_neck_hidden_d*2, hp.encoder_hidden),
nn.ReLU(),
nn.Linear(hp.encoder_hidden, hp.encoder_hidden),
nn.ReLU())
self.pitch_norm_linear = nn.Sequential(nn.Linear(hp.va_neck_hidden_p*2, hp.encoder_hidden),
nn.ReLU(),
nn.Linear(hp.encoder_hidden, hp.encoder_hidden),
nn.ReLU())
self.pitch_linear = nn.Sequential(nn.Linear(hp.va_neck_hidden_p*2, hp.encoder_hidden),
nn.ReLU(),
nn.Linear(hp.encoder_hidden, hp.encoder_hidden),
nn.ReLU())
self.energy_linear = nn.Sequential(nn.Linear(hp.va_neck_hidden_e*2, hp.encoder_hidden),
nn.ReLU(),
nn.Linear(hp.encoder_hidden, hp.encoder_hidden),
nn.ReLU())
self.residual_linear = nn.Sequential(nn.Linear(hp.va_neck_hidden_r*2, hp.encoder_hidden),
nn.ReLU(),
nn.Linear(hp.encoder_hidden, hp.encoder_hidden),
nn.ReLU())
self.text_linear_up = nn.Sequential(nn.Linear(hp.va_neck_hidden_t, hp.encoder_hidden),
nn.ReLU())
self.duration_predictor = StylePredictor()
self.length_regulator = LengthRegulator()
self.pitch_predictor = StylePredictor()
self.energy_predictor = StylePredictor()
self.pitch_bins = nn.Parameter(torch.exp(torch.linspace(
np.log(hp.f0_min), np.log(hp.f0_max), hp.n_bins-1)), requires_grad=False)
self.energy_bins = nn.Parameter(torch.linspace(
hp.energy_min, hp.energy_max, hp.n_bins-1), requires_grad=False)
self.pitch_embedding = nn.Embedding(hp.n_bins, hp.encoder_hidden)
self.energy_embedding = nn.Embedding(hp.n_bins, hp.encoder_hidden)
def predict_inference(self, text_encoding, pitch_encoding, energy_encoding, duration_encoding, speaker_encoding, noise_encoding, src_mask, max_len, speaker_normalized=True, d_control=1.0, p_control=1.0, e_control=1.0):
encodings_cat = torch.cat((text_encoding, pitch_encoding, speaker_encoding, energy_encoding, noise_encoding), dim=-1)
# Duration
log_duration_prediction = self.duration_predictor(duration_encoding, src_mask) # [batch_size, src_len]
duration_rounded = torch.clamp(
(torch.round(torch.exp(log_duration_prediction)-hp.log_offset)*d_control), min=0)
encodings_cat, mel_len = self.length_regulator(encodings_cat, duration_rounded, max_len)
mel_mask = utils.get_mask_from_lengths(mel_len)
text_encoding, pitch_encoding, speaker_encoding, energy_encoding, noise_encoding = torch.split(encodings_cat, hp.encoder_hidden, dim=-1)
# Energy
energy_prediction = self.energy_predictor(energy_encoding, mel_mask)
energy_prediction = energy_prediction*e_control
energy_embedding = self.energy_embedding(
torch.bucketize(energy_prediction, self.energy_bins))
# Pitch
pitch_prediction = self.pitch_predictor(pitch_encoding if speaker_normalized else (pitch_encoding + speaker_encoding), mel_mask)
pitch_prediction = pitch_prediction*p_control
pitch_embedding = self.pitch_embedding(
torch.bucketize(pitch_prediction, self.pitch_bins))
return text_encoding, pitch_embedding, speaker_encoding, energy_embedding, noise_encoding, log_duration_prediction, pitch_prediction, energy_prediction, mel_mask
def forward(self, text, speaker_embed, mel_target, mel_aug, p_norm, e_input, src_len, mel_len, src_mask, mel_mask=None, duration_target=None, pitch_target=None, energy_target=None, max_len=None, d_control=1.0, p_control=1.0, e_control=1.0):
# Encoding
text_encoding, text_encoding_neck, speaker_encoding_p, speaker_encoding, duration_encoding, pitch_encoding, energy_encoding, noise_encoding\
= self.style_encoder(text, speaker_embed, mel_target, p_norm, e_input, mel_aug, mel_len, src_len, src_mask)
max_seq_len = text_encoding.size(1)
# DAT
aug_posterior_d = self.augmentation_classifier_d(duration_encoding)
aug_posterior_p = self.augmentation_classifier_p(pitch_encoding)
aug_posterior_e = self.augmentation_classifier_e(energy_encoding)
# Upsampling along the frame domain
speaker_encoding = speaker_encoding.unsqueeze(1).repeat(1, max_seq_len, 1)
speaker_encoding_p = speaker_encoding_p.unsqueeze(1).repeat(1, max_seq_len, 1)
# For the inspection
self.max_seq_len = max_seq_len
self.pitch_encoding = pitch_encoding # this should be upsampled before using it during the inspection
self.speaker_encoding = speaker_encoding
self.speaker_encoding_p = speaker_encoding_p
pitch_encoding = pitch_encoding + speaker_encoding_p
# Upsampling along the channel
duration_encoding = self.duration_linear(duration_encoding)
pitch_encoding = self.pitch_linear(pitch_encoding)
energy_encoding = self.energy_linear(energy_encoding)
noise_encoding = self.residual_linear(noise_encoding)[:,:max_seq_len]
text_encoding_neck = self.text_linear_up(text_encoding_neck)
# For the inspection
self.text_encoding_neck = text_encoding_neck
self.duration_encoding = duration_encoding
self.energy_encoding = energy_encoding
self.noise_encoding = noise_encoding
self.text_encoding = text_encoding
self.src_mask = src_mask
self.max_len = max_len
encodings = torch.cat((text_encoding, text_encoding_neck+pitch_encoding, speaker_encoding, text_encoding_neck+energy_encoding, noise_encoding), dim=-1)
# Duration
log_duration_prediction = self.duration_predictor(text_encoding_neck + duration_encoding, src_mask) # [batch_size, src_len]
if duration_target is not None:
encodings, mel_len = self.length_regulator(encodings, duration_target, max_len)
else:
duration_rounded = torch.clamp(
(torch.round(torch.exp(log_duration_prediction)-hp.log_offset)*d_control), min=0)
encodings, mel_len = self.length_regulator(encodings, duration_rounded, max_len)
mel_mask = utils.get_mask_from_lengths(mel_len)
text_encoding, pitch_encoding, speaker_encoding, energy_encoding, noise_encoding = torch.split(encodings, hp.encoder_hidden, dim=-1)
# Energy
energy_prediction = self.energy_predictor(energy_encoding, mel_mask)
if energy_target is not None:
energy_embedding = self.energy_embedding(
torch.bucketize(energy_target, self.energy_bins))
else:
energy_prediction = energy_prediction*e_control
energy_embedding = self.energy_embedding(
torch.bucketize(energy_prediction, self.energy_bins))
# Pitch
pitch_prediction = self.pitch_predictor(pitch_encoding + speaker_encoding, mel_mask)
if pitch_target is not None:
pitch_embedding = self.pitch_embedding(
torch.bucketize(pitch_target, self.pitch_bins))
else:
pitch_prediction = pitch_prediction*p_control
pitch_embedding = self.pitch_embedding(
torch.bucketize(pitch_prediction, self.pitch_bins))
# Output
encoder_output = text_encoding + pitch_embedding + speaker_encoding + energy_embedding # [batch_size, mel_len, encoder_hidden]
return encoder_output, noise_encoding, log_duration_prediction, pitch_prediction, energy_prediction, mel_len, mel_mask, (aug_posterior_d, aug_posterior_p, aug_posterior_e)
class LengthRegulator(nn.Module):
""" Length Regulator """
def __init__(self):
super(LengthRegulator, self).__init__()
def LR(self, x, duration, max_len):
output = list()
mel_len = list()
for batch, expand_target in zip(x, duration):
expanded = self.expand(batch, expand_target)
output.append(expanded)
mel_len.append(expanded.shape[0])
if max_len is not None:
output = utils.pad(output, max_len)
else:
output = utils.pad(output)
return output, torch.LongTensor(mel_len).to(device)
def expand(self, batch, predicted):
out = list()
for i, vec in enumerate(batch):
expand_size = predicted[i].item()
out.append(vec.expand(int(expand_size), -1))
out = torch.cat(out, 0)
return out
def forward(self, x, duration, max_len):
output, mel_len = self.LR(x, duration, max_len)
return output, mel_len
class StylePredictor(nn.Module):
""" Duration, Pitch and Energy Predictor """
def __init__(self):
super(StylePredictor, self).__init__()
self.input_size = hp.encoder_hidden
self.filter_size = hp.style_predictor_filter_size
self.kernel = hp.style_predictor_kernel_size
self.conv_output_size = hp.style_predictor_filter_size
self.dropout = hp.style_predictor_dropout
self.conv_layer = nn.Sequential(OrderedDict([
("conv1d_1", Conv(self.input_size,
self.filter_size,
kernel_size=self.kernel,
padding=(self.kernel-1)//2)),
("relu_1", nn.ReLU()),
("layer_norm_1", nn.LayerNorm(self.filter_size)),
("dropout_1", nn.Dropout(self.dropout)),
("conv1d_2", Conv(self.filter_size,
self.filter_size,
kernel_size=self.kernel,
padding=1)),
("relu_2", nn.ReLU()),
("layer_norm_2", nn.LayerNorm(self.filter_size)),
("dropout_2", nn.Dropout(self.dropout))
]))
self.linear_layer = nn.Linear(self.conv_output_size, 1)
def forward(self, encoder_output, mask):
out = self.conv_layer(encoder_output)
out = self.linear_layer(out)
out = out.squeeze(-1)
if mask is not None:
out = out.masked_fill(mask, 0.)
return out
class Conv(nn.Module):
"""
Convolution Module
"""
def __init__(self,
in_channels,
out_channels,
kernel_size=1,
stride=1,
padding=0,
dilation=1,
bias=True,
w_init='linear'):
"""
:param in_channels: dimension of input
:param out_channels: dimension of output
:param kernel_size: size of kernel
:param stride: size of stride
:param padding: size of padding
:param dilation: dilation rate
:param bias: boolean. if True, bias is included.
:param w_init: str. weight inits with xavier initialization.
"""
super(Conv, self).__init__()
self.conv = nn.Conv1d(in_channels,
out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
bias=bias)
def forward(self, x):
x = x.contiguous().transpose(1, 2)
x = self.conv(x)
x = x.contiguous().transpose(1, 2)
return x