This is a Python client library for Kentik APIs. It is distributed as kentik-api PyPI package.
- Install the library using pip:
pip3 install kentik-api
- Check installation successful - no errors should be reported:
python3 -c "import kentik_api"
- Run an example (optional):
export KTAPI_AUTH_EMAIL=<your kentik api credentials email>
export KTAPI_AUTH_TOKEN=<your kentik api credentials token>
python3 examples/sites_example.py
The best way to get started coding with the SDK is to study provided examples.
Interfaces for manipulating all Kentik API resources are available under the KentikAPI
object.
Every Kentik API resource is represented by a public class, and all related data types are located in the same source
file or directory as the implementation of the class:
- CustomApplication
- CustomDimension
- DeviceLabel
- Device
- ManualMitigation
- Plan
- QueryObject
- QuerySQL
- SavedFilter
- Site
- Synthetic Tests
- Tag
- Tenant
- User
get_credentials
: function for retrieving authentication credentials from the environment or a profile stored on the disk. API authentication credentials can be provided via environment variablesKTAPI_AUTH_EMAIL
andKTAPI_AUTH_TOKEN
or via named profile (specified as argument to theget_credentials
functions, defaulting todefault
) which is a JSON file with following format:
{
"email": "<email address>",
"api-key": "<the API key>"
}
Path to the profile file can be provided in KTAPI_CFG_FILE
. Otherwise, it is first searched in
${KTAPI_HOME}/<profile_name>
and then in ${HOME}/.kentik/<profile_name>
.
The DeviceCache
class allows caching of device related data obtained from the Kentik API. It internally builds
index of devices by name
and by id
. Devices are represented by the Device class which
internally builds dictionary of device interfaces (represented by the DeviceInterface
class) by name
.
The analytics
package provides support for processing Kentik time series data using Pandas Dataframes.
The pandas and PyYAML modules are required by the analytics
sub-module and are automatically installed with the kentik-api[analytics]
option.
See analytics readme for more details.
- alerting_example.py - create Manual Mitigation
- applications_example.py - create/update/delete Custom Application
- bulk_user_create.py - create users from YAML file
- devices_example.py - create/update/get/delete/list Devices
- dimensions_example.py - create/update/get/delete/list Custom Dimensions, create/update/delete Populator
- labels_example.py - create/update/get/delete/list Device Labels
- my_kentik_portal_example.py - get/list Tenants, create/delete Tenant User
- plans_example.py - list plans
- queries_example.py - query for SQL/URL/data/chart
- saved_filters_example.py - create/update/get/delete/list Saved Filters
- sites_example.py - create/update/get/delete/list Sites
- tags_example.py - create/update/get/delete/list Tags
- users_example.py - create/update/get/delete/list Users
- error_handling_example.py - handling errors raised by the library
- analytics_example_sql.py - use of
SQLQueryDefinition
,flatness_analysis
methods and theDeviceCache
- analytics_example_topx.py - use of
DataQueryDefinition
,flatness_analysis
methods and theDeviceCache
(see also analytics readme) - synthetics_example.py - interact with synthetics API
- cloud_export_example.py - interact with cloud export API
This software uses the following open-source libraries:
- dacite by Konrad Hałas - MIT License
- requests by Kenneth Reitz - Apache Software License (Apache 2.0)
- typing-extensions by Guido van Rossum, Jukka Lehtosalo, Lukasz Langa, Michael Lee - PSFL License
- pandas supported by NumFOCUS - BSD 3-Clause License
- pyyaml by Ingy döt Net and Kirill Simonov - MIT license