-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnet.py
211 lines (155 loc) · 9.54 KB
/
net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import mxnet as mx
import numpy as np
bn_epsilon = 1e-3
relu_alpha = 0.1
dtype = 'float32'
def create_network():
x = mx.sym.Variable('data', dtype=dtype)
#1 conv1 16 3 x 3 / 1 416 x 416 x 3 -> 416 x 416 x 16
h1 = mx.sym.Convolution(x, kernel=(3,3), pad=(1,1), num_filter=16, name="conv1", no_bias=False)
o1 = mx.sym.LeakyReLU(h1, slope=relu_alpha, act_type="leaky")
# IMPORTANT: YOLOv2 sets the biases in every convolution = 0 and keeps only the betas (offsets) of the Batch Normalization!
# So in the end there will be only mean,var,beta(offset),gamma(scale) for every single output channel!
#2 max1 2 x 2 / 2 416 x 416 x 16 -> 208 x 208 x 16
max1 = mx.sym.Pooling(o1, kernel=(2,2), stride=(2,2), pool_type='max')
#3 conv2 32 3 x 3 / 1 208 x 208 x 16 -> 208 x 208 x 32
h2 = mx.sym.Convolution(max1, kernel=(3,3), pad=(1,1), num_filter=32, name='conv2', no_bias=False)
o2 = mx.sym.LeakyReLU(h2, slope=relu_alpha, act_type="leaky")
#4 max2 2 x 2 / 2 208 x 208 x 32 -> 104 x 104 x 32
max2 = mx.sym.Pooling(o2, kernel=(2,2), stride=(2,2), pool_type='max')
#5 conv3 64 3 x 3 / 1 104 x 104 x 32 -> 104 x 104 x 64
h3 = mx.sym.Convolution(max2, kernel=(3,3), pad=(1,1), num_filter=64, name='conv3', no_bias=False)
o3 = mx.sym.LeakyReLU(h3, slope=relu_alpha, act_type="leaky")
#6 max3 2 x 2 / 2 104 x 104 x 64 -> 52 x 52 x 64
max3 = mx.sym.Pooling(o3, kernel=(2,2), stride=(2,2), pool_type='max')
#7 conv4 128 3 x 3 / 1 52 x 52 x 64 -> 52 x 52 x 128
h4 = mx.sym.Convolution(max3, kernel=(3,3), pad=(1,1), num_filter=128, name='conv4', no_bias=False)
o4 = mx.sym.LeakyReLU(h4, slope=relu_alpha, act_type="leaky")
#8 max4 2 x 2 / 2 52 x 52 x 128 -> 26 x 26 x 128
max4 = mx.sym.Pooling(o4, kernel=(2,2), stride=(2,2), pool_type='max')
#9 conv5 256 3 x 3 / 1 26 x 26 x 128 -> 26 x 26 x 256
h5 = mx.sym.Convolution(max4, kernel=(3,3), pad=(1,1), num_filter=256, name='conv5', no_bias=False)
o5 = mx.sym.LeakyReLU(h5, slope=relu_alpha, act_type="leaky")
#10 max5 2 x 2 / 2 26 x 26 x 256 -> 13 x 13 x 256
max5 = mx.sym.Pooling(o5, kernel=(2,2), stride=(2,2), pool_type='max')
#11 conv6 512 3 x 3 / 1 13 x 13 x 256 -> 13 x 13 512
h6 = mx.sym.Convolution(max5, kernel=(3,3), pad=(1,1), num_filter=512, name='conv6', no_bias=False)
o6 = mx.sym.LeakyReLU(h6, slope=relu_alpha, act_type="leaky")
#12 max6 2 x 2 / 1 13 x 13 x 512 -> 13 x 13 x 512
max6 = mx.sym.Pooling(o6, kernel=(2,2), stride=(1,1), pad=(1,1), pool_type='max')
max6 = mx.sym.slice(max6, begin=(0,0,1,1), end=(None,None,None,None))
#13 conv7 1024 1 x 1 / 1 13 x 13 x512 -> 13 x 13 x 1024
h7 = mx.sym.Convolution(max6, kernel=(3,3), pad=(1,1), num_filter=1024, name='conv7', no_bias=False)
o7 = mx.sym.LeakyReLU(h7, slope=relu_alpha, act_type="leaky")
#14 conv8 1024 3 x 3 / 1 13 x 13 x 1024 -> 13 x 13 x1024
h8 = mx.sym.Convolution(o7, kernel=(3,3), pad=(1,1), num_filter=1024, name='conv8', no_bias=False)
o8 = mx.sym.LeakyReLU(h8, slope=relu_alpha, act_type="leaky")
#15 conv9 125 1 x 1 / 1 13 x 13 x 1024 -> 13 x 13 x125
h9 = mx.sym.Convolution(o8, kernel=(1,1), num_filter=125, name='conv9', no_bias=False)
# Linear output!
o9 = h9
return o9
# IMPORTANT: Weights order in the binary file is [ 'biases','gamma','moving_mean','moving_variance','kernel']
# IMPORTANT: biases ARE NOT the usual biases to add after the conv2d! They refer to the betas (offsets) in the Batch Normalization!
# IMPORTANT: the biases added after the conv2d are set to zero!
# IMPORTANT: to use the weights they actually need to be de-normalized because of the Batch Normalization! ( see later )
def load_conv_layer_bn(name, loaded_weights, shape, offset):
# Conv layer with Batch norm
n_kernel_weights = shape[0] * shape[1] * shape[2] * shape[3]
n_output_channels = shape[-1]
n_bn_mean = n_output_channels
n_bn_var = n_output_channels
n_biases = n_output_channels
n_bn_gamma = n_output_channels
n_weights_conv_bn = (n_kernel_weights + n_output_channels * 4)
# IMPORTANT: This is where (n_kernel_weights + n_output_channels * 4) comes from:
# n_params = kernel_shape + n_biases + n_bn_means + n_bn_var + n_bn_gammas
# n_params = kernel_shape + n_biases + n_output_channels + n_output_channels + n_output_channels
# n_params = kernel_shape + n_output_channels + n_output_channels + n_output_channels + n_output_channels
# n_params = kernel_shape + n_output_channels*4
# IMPORTANT: YOLOv2 sets the biases in every convolution = 0 and keeps only the betas (offsets) of the Batch Normalization!
# So in the end there will be only mean,var,beta(offset),gamma(scale) for every single output channel!
print('Loading '+str(n_weights_conv_bn)+' weights of '+name+' ...')
biases = loaded_weights[offset:offset+n_biases]
offset = offset + n_biases
gammas = loaded_weights[offset:offset+n_bn_gamma]
offset = offset + n_bn_gamma
means = loaded_weights[offset:offset+n_bn_mean]
offset = offset + n_bn_mean
var = loaded_weights[offset:offset+n_bn_var]
offset = offset + n_bn_var
kernel_weights = loaded_weights[offset:offset+n_kernel_weights]
offset = offset + n_kernel_weights
# IMPORTANT: DarkNet conv_weights are serialized Caffe-style: (out_dim, in_dim, height, width)
kernel_weights = np.reshape(kernel_weights,(shape[3],shape[2],shape[0],shape[1]),order='C')
# IMPORTANT: Denormalize the weights with the Batch Normalization parameters
for i in range(n_output_channels):
scale = gammas[i] / np.sqrt(var[i] + bn_epsilon)
kernel_weights[i,:,:,:] = kernel_weights[i,:,:,:] * scale
biases[i] = biases[i] - means[i] * scale
return biases, kernel_weights, offset
def load_conv_layer(name, loaded_weights, shape, offset):
# Conv layer without Batch norm
n_kernel_weights = shape[0]*shape[1]*shape[2]*shape[3]
n_output_channels = shape[-1]
n_biases = n_output_channels
n_weights_conv = (n_kernel_weights + n_output_channels)
# The number of weights is a conv layer without batchnorm is: (kernel_height*kernel_width + n_biases)
print('Loading '+str(n_weights_conv)+' weights of '+name+' ...')
biases = loaded_weights[offset:offset+n_biases]
offset = offset + n_biases
kernel_weights = loaded_weights[offset:offset+n_kernel_weights]
offset = offset + n_kernel_weights
# IMPORTANT: DarkNet conv_weights are serialized Caffe-style: (out_dim, in_dim, height, width)
kernel_weights = np.reshape(kernel_weights,(shape[3],shape[2],shape[0],shape[1]),order='C')
return biases,kernel_weights,offset
def load_weight(weights_path):
args = {}
# Load the binary to an array of float32
loaded_weights = []
loaded_weights = np.fromfile(weights_path, dtype='f')
# Delete the first 4 that are not real params...
loaded_weights = loaded_weights[4:]
print('Total number of params to load = {}'.format(len(loaded_weights)))
# IMPORTANT: starting from offset=0, layer by layer, we will get the exact number of parameters required and assign them!
# Conv1 , 3x3, 3->16
offset = 0
biases, kernel_weights, offset = load_conv_layer_bn('conv1', loaded_weights, [3,3,3,16], offset)
args['conv1_bias'] = mx.nd.array(biases)
args['conv1_weight'] = mx.nd.array(kernel_weights)
# Conv2 , 3x3, 16->32
biases, kernel_weights, offset = load_conv_layer_bn('conv2', loaded_weights, [3,3,16,32], offset)
args['conv2_bias'] = mx.nd.array(biases)
args['conv2_weight'] = mx.nd.array(kernel_weights)
# Conv3 , 3x3, 32->64
biases, kernel_weights, offset = load_conv_layer_bn('conv3', loaded_weights, [3,3,32,64], offset)
args['conv3_bias'] = mx.nd.array(biases)
args['conv3_weight'] = mx.nd.array(kernel_weights)
# Conv4 , 3x3, 64->128
biases, kernel_weights, offset = load_conv_layer_bn('conv4', loaded_weights,[3,3,64,128], offset)
args['conv4_bias'] = mx.nd.array(biases)
args['conv4_weight'] = mx.nd.array(kernel_weights)
# Conv5 , 3x3, 128->256
biases, kernel_weights, offset = load_conv_layer_bn('conv5', loaded_weights,[3,3,128,256], offset)
args['conv5_bias'] = mx.nd.array(biases)
args['conv5_weight'] = mx.nd.array(kernel_weights)
# Conv6 , 3x3, 256->512
biases, kernel_weights, offset = load_conv_layer_bn('conv6', loaded_weights,[3,3,256,512], offset)
args['conv6_bias'] = mx.nd.array(biases)
args['conv6_weight'] = mx.nd.array(kernel_weights)
# Conv7 , 3x3, 512->1024
biases, kernel_weights, offset = load_conv_layer_bn('conv7', loaded_weights,[3,3,512,1024], offset)
args['conv7_bias'] = mx.nd.array(biases)
args['conv7_weight'] = mx.nd.array(kernel_weights)
# Conv8 , 3x3, 1024->1024
biases, kernel_weights, offset = load_conv_layer_bn('conv8', loaded_weights,[3,3,1024,1024], offset)
args['conv8_bias'] = mx.nd.array(biases)
args['conv8_weight'] = mx.nd.array(kernel_weights)
# Conv9 , 1x1, 1024->125
biases, kernel_weights, offset = load_conv_layer('conv9', loaded_weights,[1,1,1024,125], offset)
args['conv9_bias'] = mx.nd.array(biases)
args['conv9_weight'] = mx.nd.array(kernel_weights)
# These two numbers MUST be equal!
print('Final offset = {}'.format(offset))
print('Total number of params in the weight file = {}'.format(len(loaded_weights)))
return args